2.793

                    2018影響因子

                    (CJCR)

                    • 中文核心
                    • EI
                    • 中國科技核心
                    • Scopus
                    • CSCD
                    • 英國科學文摘

                    留言板

                    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

                    姓名
                    郵箱
                    手機號碼
                    標題
                    留言內容
                    驗證碼

                    基于核自適應濾波器的時間序列在線預測研究綜述

                    韓敏 馬俊珠 任偉杰 鐘凱

                    韓敏, 馬俊珠, 任偉杰, 鐘凱. 基于核自適應濾波器的時間序列在線預測研究綜述. 自動化學報, 2021, 47(4): 730?746 doi: 10.16383/j.aas.c190051
                    引用本文: 韓敏, 馬俊珠, 任偉杰, 鐘凱. 基于核自適應濾波器的時間序列在線預測研究綜述. 自動化學報, 2021, 47(4): 730?746 doi: 10.16383/j.aas.c190051
                    Han Min, Ma Jun-Zhu, Ren Wei-Jie, Zhong Kai. A survey of time series online prediction based on kernel adaptive filters. Acta Automatica Sinica, 2021, 47(4): 730?746 doi: 10.16383/j.aas.c190051
                    Citation: Han Min, Ma Jun-Zhu, Ren Wei-Jie, Zhong Kai. A survey of time series online prediction based on kernel adaptive filters. Acta Automatica Sinica, 2021, 47(4): 730?746 doi: 10.16383/j.aas.c190051

                    基于核自適應濾波器的時間序列在線預測研究綜述

                    doi: 10.16383/j.aas.c190051
                    基金項目: 國家自然科學基金(61773087)資助
                    詳細信息
                      作者簡介:

                      韓敏:大連理工大學電子信息與電氣工程學部教授. 主要研究方向為模式識別, 復雜系統建模及時間序列預測. 本文通信作者.E-mail: minhan@dlut.edu.cn

                      馬俊珠:大連理工大學電子信息與電氣工程學部碩士研究生. 主要研究方向為時間序列在線建模, 預測.E-mail: majunzhu@mail.dlut.edu.cn

                      任偉杰:大連理工大學電子信息與電氣工程學部博士研究生. 主要研究方向為時間序列分析和特征選擇.E-mail: renweijie@mail.dlut.edu.cn

                      鐘凱:大連理工大學電子信息與電氣工程學部博士研究生. 主要研究方向為工業過程監控, 故障診斷.E-mail: zhongkai0402@mail.dlut.edu.cn

                    A Survey of Time Series Online Prediction Based on Kernel Adaptive Filters

                    Funds: Supported by National Natural Science Foundation of China (61773087)
                    More Information
                      Author Bio:

                      HAN Min Professor at the Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology. Her research interest covers pattern recognition, modeling of complex system, and time series prediction. Corresponding author of this paper

                      MA Jun-Zhu Master student at the Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology. Her research interest covers time series online modeling and prediction

                      REN Wei-Jie Ph.D. candidate at the Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology. His research interest covers time series analysis and feature selection

                      ZHONG Kai Ph.D. candidate at the Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology. His research interest covers industrial process monitoring and fault diagnosis

                    • 摘要: 核自適應濾波器(Kernel adaptive filter, KAF)是時間序列在線預測的重點研究領域之一, 本文對核自適應濾波器的最新進展及未來研究方向進行了分析和總結. 基于核自適應濾波器的時間序列在線預測方法, 能較好地解決預測、跟蹤問題. 本文首先概述了三類核自適應濾波器的基本模型, 包括核最小均方算法、核遞歸最小二乘算法和核仿射投影算法(Kernel affine projection algorithm, KAPA). 在此基礎上, 從核自適應濾波器在線預測的內容和機理入手, 綜述基于核自適應濾波器的時間序列在線預測方法. 最后, 本文將介紹這一領域潛在的研究方向和發展趨勢, 并展望未來的挑戰.
                    • 圖  1  從輸入空間到特征空間的非線性映射f(·)

                      Fig.  1  Nonlinear mapping f(·) from input space to feature space

                      圖  2  KAF方法分類框圖

                      Fig.  2  Classification diagram of the KAF method

                      表  1  不同KAF方法的時間序列在線預測特性對比結果

                      Table  1  Comparison of online prediction characteristics of time series of different KAF methods

                      算法類型 預測效率 預測精度 收斂速度 特點
                      KLMS[19] 較高 較低 較慢 泛化能力和正則化特性
                      KRLS[20] 較低 較高 較快 白化處理, 收斂速度較快
                      KAPA[21] 考慮多個樣本, 降低梯度噪聲
                      下載: 導出CSV

                      表  2  每次迭代過程涉及的計算復雜度比較

                      Table  2  Comparison of computational complexity involved in each iteration

                      核自適應濾
                      波器類型
                      在線稀
                      疏類型
                      計算復雜度
                      KLMS[19] VQ 更新$ {\alpha} \left( i \right) $ ${\rm O}( { {L^2} } )$
                      在線VQ ${\rm O}( { {L} } )$
                      SF 更新$ {\omega} \left( i \right) $ ${\rm O}( { {L} } )$
                      更新$ {e}\left( i \right) $ ${\rm O}( { {L} } )$
                      KRLS[20] VQ 更新$ {\alpha} \left( i \right) $ ${\rm O}( { {L} } )$
                      在線VQ ${\rm O}( { {L} } )$
                      更新$ {P}\left( i \right) $ ${\rm O}( { {L^2} } )$
                      ALD 更新$ {\alpha} \left( i \right) $ ${\rm O}( { {L^2} } )$(${\rm O}( { {L^2} } )$
                      假如字典改變)
                      更新ALD ${\rm O}( { {L^2} } )$
                      更新${P}\left( i \right)$ ${\rm O}( { {L^2} } )$
                      SW 更新$ {\alpha} \left( i \right) $ ${\rm O}( { {K^2} } )$(${\rm O}( { {K} } )$
                      假如字典改變)
                      更新${P}\left( i \right)$ ${\rm O}( { {K^2} } )$
                      更新${D}\left( i \right)$ ${\rm O}( { {K^2} } )$
                      FB 更新$ {\alpha} \left( i \right) $ ${\rm O}( { {K^2} } )$(${\rm O}( { {K} } )$
                      假如字典改變)
                      更新${P}\left( i \right)$ ${\rm O}( { {K^2} } )$
                      更新$ {{\hat K}_n}\left( i \right) $ ${\rm O}( { {K^2} } )$
                      MF 更新$ {\alpha} \left( i \right) $ ${\rm O}( { {L} } )$
                      更新$ {e}\left( i \right) $ ${\rm O}( { {L} } )$
                      更新${D}\left( i \right)$ ${\rm O}( { {L^2} } )$
                      CC 更新$ {\alpha} \left( i \right) $ ${\rm O}( { {K^2} } )$(${\rm O}( { {K} } )$
                      假如字典改變)
                      更新$ {e}\left( i \right) $ ${\rm O}( { {K^2} } )$
                      更新${D}\left( i \right)$ ${\rm O}( { {K^2} } )$
                      KAPA[21] VQ 更新$ {\alpha} \left( i \right) $ ${\rm O}( { {L} } )$
                      在線VQ ${\rm O}( { {L} } )$
                      更新${P}\left( i \right)$ ${\rm O}( { {L^2} } )$
                      HC 更新$ {e}\left( i \right) $ ${\rm O}( { {L} } )$
                      更新$ {\bf{\zeta }}\left( i \right) $ ${\rm O}( { {L} } )$
                      下載: 導出CSV
                      360彩票
                    • [1] Gan M, Chen C L P, Li H X, Chen L. Gradient radial basis function based varying-coefficient autoregressive model for nonlinear and nonstationary time series. IEEE Signal Processing Letters, 2015, 22(7): 809?812 doi: 10.1109/LSP.2014.2369415
                      [2] Schamberg G, Ba D, Coleman T P. A modularized efficient framework for non-Markov time series estimation. IEEE Transactions on Signal Processing, 2018, 66(12): 3140?3154 doi: 10.1109/TSP.2018.2793870
                      [3] Gonzalez J P, San Roque A M S M, Perez E A. Forecasting functional time series with a new Hilbertian ARMAX model: Application to electricity price forecasting. IEEE Transactions on Power Systems, 2018, 33(1): 545?556 doi: 10.1109/TPWRS.2017.2700287
                      [4] Rahman M M, Islam M, Murase K, Yao X. Layered ensemble architecture for time series forecasting. IEEE Transactions on Cybernetics, 2016, 46(1): 270?283 doi: 10.1109/TCYB.2015.2401038
                      [5] Zhu J, Chen N, Peng W W. Estimation of bearing remaining useful life based on multiscale convolutional neural network. IEEE Transactions on Industrial Electronics, 2019, 66(4): 3208?3216 doi: 10.1109/TIE.2018.2844856
                      [6] Chang F J, Chen P A, Lu Y R, Huang E, Chang K Y. Real-time multi-step-ahead water level forecasting by recurrent neural networks for urban flood control. Journal of Hydrology, 2014, 517: 836?846 doi: 10.1016/j.jhydrol.2014.06.013
                      [7] Vapnik V N. The Nature of Statistical Learning Theory. New York: Springer, 2000.
                      [8] Girosi F, Jones M, Poggio T. Regularization theory and neural networks architectures. Neural Computation, 1995, 7(2): 219?269 doi: 10.1162/neco.1995.7.2.219
                      [9] Platt J. A resource-allocating network for function interpolation. Neural Computation, 1991, 3(2): 213?225 doi: 10.1162/neco.1991.3.2.213
                      [10] Huang G B, Saratchandran P, Sundararajan N. A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation. IEEE Transactions on Neural Networks, 2005, 16(1): 57?67 doi: 10.1109/TNN.2004.836241
                      [11] Suykens J A K, Vandewalle J. Least squares support vector machine classifiers. Neural Processing Letters, 1999, 9(3): 293?300 doi: 10.1023/A:1018628609742
                      [12] Scholkopf B, Smola A J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Cambridge: MIT Press, 2001.
                      [13] Liu W F, Principe J C, Haykin S. Kernel Adaptive Filtering: A Comprehensive Introduction. Hoboken: John Wiley & Sons, 2010.
                      [14] Scholkopf B, Smola A, Muller K R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 1998, 10(5): 1299?1319 doi: 10.1162/089976698300017467
                      [15] Feng D Z, Bao Z, Jiao L C. Total least mean squares algorithm. IEEE Transactions on Signal Processing, 1998, 46(8): 2122?2130 doi: 10.1109/78.705421
                      [16] Henon M. A two-dimensional mapping with a strange attractor. The Theory of Chaotic Attractors. New York, NY: Springer, 1976. 94-102
                      [17] Kivinen J, Smola A J, Williamson R C. Online learning with kernels. IEEE Transactions on Signal Processing, 2004, 52(8): 2165?2176 doi: 10.1109/TSP.2004.830991
                      [18] Richard C, Bermudez J C M, Honeine P. Online prediction of time series data with kernels. IEEE Transactions on Signal Processing, 2009, 57(3): 1058?1067 doi: 10.1109/TSP.2008.2009895
                      [19] Liu W F, Pokharel P P, Principe J C. The kernel least-mean-square algorithm. IEEE Transactions on Signal Processing, 2008, 56(2): 543?554 doi: 10.1109/TSP.2007.907881
                      [20] Engel Y, Mannor S, Meir R. The kernel recursive least-squares algorithm. IEEE Transactions on Signal Processing, 2004, 52(8): 2275?2285 doi: 10.1109/TSP.2004.830985
                      [21] Liu W F, Principe J C. Kernel affine projection algorithms. EURASIP Journal on Advances in Signal Processing, 2008, 2008(1): 784292 doi: 10.1155/2008/784292
                      [22] Chen B D, Zhao S L, Zhu P P, Príncipe J C. Quantized kernel least mean square algorithm. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(1): 22?32 doi: 10.1109/TNNLS.2011.2178446
                      [23] Zhao J, Liao X F, Wang S Y, Tse C K. Kernel least mean square with single feedback. IEEE Signal Processing Letters, 2015, 22(7): 953?957 doi: 10.1109/LSP.2014.2377726
                      [24] Zheng Y F, Wang S Y, Feng J C, Tse C K. A modified quantized kernel least mean square algorithm for prediction of chaotic time series. Digital Signal Processing, 2016, 48: 130?136 doi: 10.1016/j.dsp.2015.09.015
                      [25] Liu Y Q, Sun C, Jiang S D. A kernel least mean square algorithm based on randomized feature networks. Applied Sciences, 2018, 8(3): 458 doi: 10.3390/app8030458
                      [26] Van Vaerenbergh S, Via J, Santamaria I. A sliding-window kernel RLS algorithm and its application to nonlinear channel identification. In: Proceedings of 2006 IEEE International Conference on Acoustics Speech and Signal Processing. Toulouse, France: IEEE, 2006. 789—792
                      [27] Liu W F, Park I, Wang Y W, Principe J C. Extended kernel recursive least squares algorithm. IEEE Transactions on Signal Processing, 2009, 57(10): 3801?3814 doi: 10.1109/TSP.2009.2022007
                      [28] Van Vaerenbergh S, Santamaria I, Liu W F, Principe J C. Fixed-budget kernel recursive least-squares. In: Proceedings of 2010 IEEE International Conference on Acoustics, Speech and Signal Processing. Dallas, TX, USA: IEEE, 2010. 1882?1885
                      [29] Van Vaerenbergh S, Lazaro-Gredilla M, Santamaria I. Kernel recursive least-squares tracker for time-varying regression. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(8): 1313?1326 doi: 10.1109/TNNLS.2012.2200500
                      [30] Chen B D, Zhao S L, Zhu P P, Principe J C. Quantized kernel recursive least squares algorithm. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(9): 1484?1491 doi: 10.1109/TNNLS.2013.2258936
                      [31] Wang S Y, Wang W, Duan S K, Wang L D. Kernel recursive least squares with multiple feedback and its convergence analysis. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2017, 66(10): 1237?1241
                      [32] Zhang S H, Han M, Wang J, Wang D. Multivariate time series online prediction based on adaptive normalized sparse kernel recursive least squares algorithm. In: Proceedings of the 7th International Conference on Information Science and Technology. Da Nang, Vietnam: IEEE, 2017. 38?44
                      [33] Ogunfunmi T, Paul T. On the complex kernel-based adaptive filter. In: Proceedings of 2011 IEEE International Symposium of Circuits and Systems. Rio de Janeiro, Brazil: IEEE, 2011. 1263−1266
                      [34] Gil-Cacho J M, Van Waterschoot T, Moonen M, Jensen S H. Nonlinear acoustic echo cancellation based on a parallel-cascade kernel affine projection algorithm. In: Proceedings of 2012 IEEE International Conference on Acoustics, Speech and Signal Processing. Kyoto, Japan: IEEE, 2012. 33?36
                      [35] Yang X H, Qu H, Zhao J, Chen B D. Hybrid affine projection algorithm. In: Proceedings of the 13th International Conference on Control Automation Robotics & Vision. Singapore, Singapore: IEEE, 2014. 964?968
                      [36] Ren X W, Yu Q H, Chen B D, Zheng N N, Ren P J. A reconfigurable parallel FPGA accelerator for the kernel affine projection algorithm. In: Proceedings of 2015 IEEE International Conference on Digital Signal Processing. Singapore, Singapore: IEEE, 2015. 906−910
                      [37] Singh A, Ahuja N, Moulin P. Online learning with kernels: Overcoming the growing sum problem. In: Proceedings of 2012 IEEE International Workshop on Machine Learning for Signal Processing. Santander, Spain: IEEE, 2012. 1−6
                      [38] Haykin S. Adaptive Filter Theory. Dorling Kindersley, India: Pearson Education, 2008.
                      [39] Zhao S L, Chen B D, Zhu P P, Principe J C. Fixed budget quantized kernel least-mean-square algorithm. Signal Processing, 2013, 93(9): 2759?2770 doi: 10.1016/j.sigpro.2013.02.012
                      [40] Rzepka D. Fixed-budget kernel least mean squares. In: Proceedings of the 17th IEEE International Conference on Emerging Technologies & Factory Automation. Krakow, Poland: IEEE, 2012. 1-4
                      [41] Fan H J, Song Q. A linear recurrent kernel online learning algorithm with sparse updates. Neural Networks, 2014, 50: 142?153 doi: 10.1016/j.neunet.2013.11.011
                      [42] Liu W f, Park I, Principe J C. An information theoretic approach of designing sparse kernel adaptive filters. IEEE Transactions on Neural Networks, 2009, 20(12): 1950?1961 doi: 10.1109/TNN.2009.2033676
                      [43] Ma W T, Duan J D, Man W S, Zhao H Q, Chen B D. Robust kernel adaptive filters based on mean p-power error for noisy chaotic time series prediction. Engineering Applications of Artificial Intelligence, 2017, 58: 101?110 doi: 10.1016/j.engappai.2016.11.010
                      [44] Chen B D, Xing L, Zhao H Q, Zheng N N, Principe J C. Generalized correntropy for robust adaptive filtering. IEEE Transactions on Signal Processing, 2016, 64(13): 3376?3387 doi: 10.1109/TSP.2016.2539127
                      [45] Chen B D, Wang J J, Zhao H Q, Zheng N N, Principe J C. Convergence of a fixed-point algorithm under maximum correntropy criterion. IEEE Signal Processing Letters, 2015, 22(10): 1723?1727 doi: 10.1109/LSP.2015.2428713
                      [46] Chen B D, Zhao S L, Zhu P P, Principe J C. Mean square convergence analysis for kernel least mean square algorithm. Signal Processing, 2012, 92(11): 2624?2632 doi: 10.1016/j.sigpro.2012.04.007
                      [47] Gao W, Chen J, Richard C, Huang J G. Online dictionary learning for kernel LMS. IEEE Transactions on Signal Processing, 2014, 62(11): 2765?2777 doi: 10.1109/TSP.2014.2318132
                      [48] Han M, Wang Y N. Nonlinear time series online prediction using reservoir Kalman filter. In: Proceedings of 2009 International Joint Conference on Neural Networks. Atlanta, USA: IEEE, 2009. 1090−1094
                      [49] Zhou H W, Huang J Q, Lu F, Thiyagalingam J, Kirubarajan T. Echo state kernel recursive least squares algorithm for machine condition prediction. Mechanical Systems and Signal Processing, 2018, 111: 68?86 doi: 10.1016/j.ymssp.2018.03.047
                      [50] Wang X Y, Han M. Multivariate time series prediction based on multiple kernel extreme learning machine. In: Proceedings of 2014 International Joint Conference on Neural Networks. Beijing, China: IEEE, 2014. 198−201
                      [51] Xu M L, Zhang S H, Han M. Multivariate time series modeling and prediction based on reservoir independent components. In: Proceedings of the 6th International Conference on Intelligent Control and Information Processing (ICICIP). Wuhan, China: IEEE, 2015. 325−330
                      [52] Han M, Zhang S H, Xu M L, Qiu T, Wang N. Multivariate chaotic time series online prediction based on improved kernel recursive least squares algorithm. IEEE Transactions on Cybernetics, 2019, 49(4): 1160?1172 doi: 10.1109/TCYB.2018.2789686
                      [53] Han M, Ren W J, Xu M L, Qiu T. Nonuniform state space reconstruction for multivariate chaotic time series. IEEE Transactions on Cybernetics, 2019, 49(5): 1885?1895 doi: 10.1109/TCYB.2018.2816657
                      [54] 韓敏, 任偉杰, 許美玲. 一種基于L1范數正則化的回聲狀態網絡. 自動化學報, 2014, 40(11): 2428?2435

                      Han Min, Ren Wei-Jie, Xu Mei-Ling. An improved echo state network via L1-norm regularization. Acta Automatica Sinica, 2014, 40(11): 2428?2435
                      [55] 唐舟進, 任峰, 彭濤, 王文博. 基于迭代誤差補償的混沌時間序列最小二乘支持向量機預測算法. 物理學報, 2014, 63(5): 050505 doi: 10.7498/aps.63.050505

                      Tang Zhou-Jin, Ren Feng, Peng Tao, Wang Wen-Bo. A least square support vector machine prediction algorithm for chaotic time series based on the iterative error correction. Acta Physica Sinica, 2014, 63(5): 050505 doi: 10.7498/aps.63.050505
                      [56] 劉暢, 郎勁. 基于混核LSSVM的批特征風功率預測方法. 自動化學報, 2020, 46(6): 1264?1273

                      Liu Chang, Lang Jin. Wind power prediction method using hybrid kernel LSSVM with batch feature. Acta Automatica Sinica, 2020, 46(6): 1264?1273
                      [57] 梅英, 譚冠政, 劉振燾, 武鶴. 基于大腦情感學習模型和自適應遺傳算法的混沌時間序列預測. 物理學報, 2018, 67(8): 080502 doi: 10.7498/aps.67.20172104

                      Mei Ying, Tan Guan-Zheng, Liu Zhen-Tao, Wu He. Chaotic time series prediction based on brain emotional learning model and self-adaptive genetic algorithm. Acta Physica Sinica, 2018, 67(8): 080502 doi: 10.7498/aps.67.20172104
                      [58] 楊臻明, 岳繼光, 王曉保, 蕭蘊詩. 基于獨立成分分析的含噪聲時間序列預測. 控制與決策, 2013, 28(4): 501?505

                      Yang Zhen-Ming, Yue Ji-Guang, Wang Xiao-Bao, Xiao Yun-Shi. Noisy time series prediction using independent component analysis. Control and Decision, 2013, 28(4): 501?505
                      [59] 宋曉祥, 郭艷, 李寧, 余東平. 基于稀疏貝葉斯學習的協同進化時間序列缺失數據預測算法. 計算機科學, 2019, 46(7): 217?223 doi: 10.11896/j.issn.1002-137X.2019.07.033

                      Song Xiao-Xiang, Guo Yan, Li Ning, Yu Dong-Ping. Missing data prediction algorithm based on sparse Bayesian learning in coevolving time series. Computer Science, 2019, 46(7): 217?223 doi: 10.11896/j.issn.1002-137X.2019.07.033
                      [60] 宋曉祥, 郭艷, 李寧, 王萌. 基于壓縮感知的時間序列缺失數據預測算法. 計算機科學, 2019, 46(6): 35?40 doi: 10.11896/j.issn.1002-137X.2019.06.004

                      Song Xiao-Xiang, Guo Yan, Li Ning, Wang Meng. Missing data prediction based on compressive sensing in time series. Computer Science, 2019, 46(6): 35?40 doi: 10.11896/j.issn.1002-137X.2019.06.004
                      [61] Paul T K, Ogunfunmi T. On the convergence behavior of the affine projection algorithm for adaptive filters. IEEE Transactions on Circuits and Systems I: Regular Papers, 2011, 58(8): 1813?1826 doi: 10.1109/TCSI.2011.2106091
                      [62] Slavakis K, Theodoridis S, Yamada I. Online kernel-based classification using adaptive projection algorithms. IEEE Transactions on Signal Processing, 2008, 56(7): 2781?2796 doi: 10.1109/TSP.2008.917376
                      [63] Yukawa M. Multikernel adaptive filtering. IEEE Transactions on Signal Processing, 2012, 60(9): 4672?4682 doi: 10.1109/TSP.2012.2200889
                      [64] 張帆. Adaline神經網絡隨機逼近LMS算法的仿真研究. 電子設計工程, 2009, 17(9): 88?90 doi: 10.3969/j.issn.1674-6236.2009.09.034

                      Zhang Fan. Simulation study of stochastic approximation LMS algorithm of adaline neural network. Electronic Design Engineering, 2009, 17(9): 88?90 doi: 10.3969/j.issn.1674-6236.2009.09.034
                      [65] Han M, Zhong K, Qiu T, Han B. Interval type-2 fuzzy neural networks for chaotic time series prediction: A concise overview. IEEE Transactions on Cybernetics, 2019, 49(7): 2720?2731 doi: 10.1109/TCYB.2018.2834356
                      [66] 李海林, 梁葉. 基于動態時間彎曲的股票時間序列聯動性研究. 數據采集與處理, 2016, 31(1): 117?129

                      Li Hai-Lin, Liang Ye. Co-movement research of stock time series based on dynamic time warping. Journal of Data Acquisition & Processing, 2016, 31(1): 117?129
                      [67] Li H L. Piecewise aggregate representations and lower-bound distance functions for multivariate time series. Physica A: Statistical Mechanics and its Applications, 2015, 427: 10?25 doi: 10.1016/j.physa.2015.01.063
                      [68] 韓敏, 王亞楠. 基于Kalman濾波的儲備池多元時間序列在線預報器. 自動化學報, 2010, 36(1): 169?173 doi: 10.3724/SP.J.1004.2010.00169

                      Han Min, Wang Ya-Nan. Multivariate time series online predictor with Kalman filter trained reservoir. Acta Automatica Sinica, 2010, 36(1): 169?173 doi: 10.3724/SP.J.1004.2010.00169
                      [69] Aghabozorgi S, Teh Y W. Stock market co-movement assessment using a three-phase clustering method. Expert Systems with Applications, 2014, 41(4): 1301?1314 doi: 10.1016/j.eswa.2013.08.028
                      [70] Jeon S, Hong B, Chang V. Pattern graph tracking-based stock price prediction using big data. Future Generation Computer Systems, 2018, 80: 171?187 doi: 10.1016/j.future.2017.02.010
                      [71] 萬?;? 李海林. 基于特征表示的金融多元時間序列數據分析. 統計與決策, 2015, (23): 151?155

                      Wan Xiao-Ji, Li Hai-Lin. Financial multivariate time series data analysis based on feature representation. Statistics and Decision, 2015, (23): 151?155
                      [72] Lu L, Zhao H Q, Chen B D. Time series prediction using kernel adaptive filter with least mean absolute third loss function. Nonlinear Dynamics, 2017, 90(2): 999?1013 doi: 10.1007/s11071-017-3707-7
                      [73] Takizawa M A, Yukawa M. Efficient dictionary-refining kernel adaptive filter with fundamental insights. IEEE Transactions on Signal Processing, 2016, 64(16): 4337—4350
                      [74] Anava O, Hazan E, Mannor S, Shamir O. Online learning for time series prediction. In: Proceedings of the 26th Annual Conference on Learning Theory. Princeton University, USA: JMLR.org, 2013. 172−184
                      [75] Santos J D A, Barreto G A. An outlier-robust kernel RLS algorithm for nonlinear system identification. Nonlinear Dynamics, 2017, 90(3): 1707?1726 doi: 10.1007/s11071-017-3760-2
                      [76] Hong Y S T. Dynamic nonlinear state-space model with a neural network via improved sequential learning algorithm for an online real-time hydrological modeling. Journal of Hydrology, 2012, 468-469: 11?21 doi: 10.1016/j.jhydrol.2012.08.001
                      [77] Chen B D, Liang J L, Zheng N N, Principe J C. Kernel least mean square with adaptive kernel size. Neurocomputing, 2016, 191: 95?106 doi: 10.1016/j.neucom.2016.01.004
                      [78] Song Q. Time series prediction based on online learning. In: Proceedings of the 14th IEEE International Conference on Machine Learning and Applications. Miami, USA: IEEE, 2015. 857?864
                      [79] Tuia D, Munoz-Mari J, Rojo-Alvarez J L, Martinez-Ramon M, Camps-Valls G. Explicit recursive and adaptive filtering in reproducing kernel Hilbert spaces. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(7): 1413?1419 doi: 10.1109/TNNLS.2013.2293871
                      [80] Wang S Y, Zheng Y F, Duan S K, Wang L D, Tan H T. Quantized kernel maximum correntropy and its mean square convergence analysis. Digital Signal Processing, 2017, 63: 164?176 doi: 10.1016/j.dsp.2017.01.010
                      [81] Constantin I, Lengelle R. Performance analysis of kernel adaptive filters based on RLS algorithm. In: Proceedings of the 25th International Conference on Microelectronics. Beirut, Lebanon: IEEE, 2013. 1?4
                      [82] Van Vaerenbergh S, Santamaria I, Lazaro-Gredilla M. Estimation of the forgetting factor in kernel recursive least squares. In: Proceedings of 2012 IEEE International Workshop on Machine Learning for Signal Processing. Santander, Spain: IEEE, 2012. 1?6
                      [83] Crammer K, Dekel O, Keshet J, Shalev-Shwartz S, Singer Y. Online passive-aggressive algorithms. The Journal of Machine Learning Research, 2006, 7: 551?585
                      [84] Mairal J, Bach F, Ponce J, Sapiro G. Online learning for matrix factorization and sparse coding. The Journal of Machine Learning Research, 2010, 11: 19?60
                      [85] Guan N Y, Tao D C, Luo Z G, Yuan B. Online nonnegative matrix factorization with robust stochastic approximation. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(7): 1087?1099 doi: 10.1109/TNNLS.2012.2197827
                      [86] Duchi J, Hazan E, Singer Y. Adaptive subgradient methods for online learning and stochastic optimization. The Journal of Machine Learning Research, 2011, 12: 2121?2159
                      [87] Zhao P L, Hoi S C H, Jin R. Double updating online learning. The Journal of Machine Learning Research, 2011, 12: 1587?1615
                      [88] Wang Z, Crammer K, Vucetic S. Breaking the curse of kernelization: Budgeted stochastic gradient descent for large-scale SVM training. The Journal of Machine Learning Research, 2012, 13(1): 3103?3131
                      [89] Le T, Nguyen T D, Nguyen V, Phung D. Approximation vector machines for large-scale online learning. The Journal of Machine Learning Research, 2017, 18(1): 3962?4016
                      [90] Hoi S C H, Wang J L, Zhao P L. LIBOL: A library for online learning algorithms. The Journal of Machine Learning Research, 2014, 15(1): 495?499
                      [91] Bottou L, Le Cun Y. Large-scale online learning. In: Proceedings of the 16th International Conference on Neural Information Processing Systems. Vancouver, BC, Canada, 2003. 217—224
                      [92] Dieuleveut A, Flammarion N, Bach F. Harder, better, faster, stronger convergence rates for least-squares regression. The Journal of Machine Learning Research, 2017, 18(101): 1?51
                      [93] Lin J H, Zhou D X. Online learning algorithms can converge comparably fast as batch learning. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(6): 2367?2378 doi: 10.1109/TNNLS.2017.2677970
                      [94] Flores A, de Lamare R C. Set-membership adaptive kernel NLMS algorithms: Design and analysis. Signal Processing, 2019, 154: 1?14 doi: 10.1016/j.sigpro.2018.07.007
                      [95] Liu Y Q, Sun C, Jiang S D. Kernel filtered-x LMS algorithm for active noise control system with nonlinear primary path. Circuits, Systems, and Signal Processing, 2018, 37(12): 5576?5594 doi: 10.1007/s00034-018-0832-6
                      [96] Lei Y W, Shi L, Guo Z C. Convergence of unregularized online learning algorithms. The Journal of Machine Learning Research, 2017, 18(171): 1?3
                      [97] Ma Y T, Zheng T. Stabilized sparse online learning for sparse data. The Journal of Machine Learning Research, 2017, 18(131): 1?36
                      [98] Wada T, Fukumori K, Tanaka T. Dictionary learning for gaussian kernel adaptive filtering with variablekernel center and width. In: Proceedings of 2018 IEEE International Conference on Acoustics, Speech and Signal Processing. Calgary, Canada: IEEE, 2018. 2766−2770
                      [99] Wang S Y, Dang L J, Chen B D, Ling C X, Wang L D, Duan S K. Kernel online learning algorithm with scale adaptation. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2018, 65(11): 1788?1792 doi: 10.1109/TCSII.2017.2765523
                      [100] Ohnishi M, Yukawa M. Online nonlinear estimation via iterative L2-space projections: Reproducing kernel of subspace. IEEE Transactions on Signal Processing, 2018, 66(15): 4050?4064 doi: 10.1109/TSP.2018.2846271
                      [101] Shin B S, Yukawa M, Cavalcante R L G, Dekorsy A. Distributed adaptive learning with multiple kernels in diffusion networks. IEEE Transactions on Signal Processing, 2018, 66(21): 5505?5519 doi: 10.1109/TSP.2018.2868040
                    • 加載中
                    圖(2) / 表(2)
                    計量
                    • 文章訪問數:  1475
                    • HTML全文瀏覽量:  3465
                    • PDF下載量:  311
                    • 被引次數: 0
                    出版歷程
                    • 收稿日期:  2019-01-21
                    • 錄用日期:  2019-09-24
                    • 網絡出版日期:  2020-01-02
                    • 刊出日期:  2021-04-23

                    目錄

                      /

                      返回文章
                      返回