2.793

                    2018影響因子

                    (CJCR)

                    • 中文核心
                    • EI
                    • 中國科技核心
                    • Scopus
                    • CSCD
                    • 英國科學文摘

                    留言板

                    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

                    姓名
                    郵箱
                    手機號碼
                    標題
                    留言內容
                    驗證碼

                    二自由度無人直升機的非線性自抗擾姿態控制

                    王怡怡 趙志良

                    王怡怡,  趙志良.  二自由度無人直升機的非線性自抗擾姿態控制.  自動化學報,  2021,  47(8): 1951?1962 doi: 10.16383/j.aas.c190521
                    引用本文: 王怡怡,  趙志良.  二自由度無人直升機的非線性自抗擾姿態控制.  自動化學報,  2021,  47(8): 1951?1962 doi: 10.16383/j.aas.c190521
                    Wang Yi-Yi,  Zhao Zhi-Liang.  Nonlinear active disturbance rejection attitude control of two-DOF unmanned helicopter.  Acta Automatica Sinica,  2021,  47(8): 1951?1962 doi: 10.16383/j.aas.c190521
                    Citation: Wang Yi-Yi,  Zhao Zhi-Liang.  Nonlinear active disturbance rejection attitude control of two-DOF unmanned helicopter.  Acta Automatica Sinica,  2021,  47(8): 1951?1962 doi: 10.16383/j.aas.c190521

                    二自由度無人直升機的非線性自抗擾姿態控制

                    doi: 10.16383/j.aas.c190521
                    基金項目: 國家自然科學基金(61973202), 流程工業綜合自動化國家重點實驗室開放課題基金資助
                    詳細信息
                      作者簡介:

                      王怡怡:陜西師范大學數學與統計學院碩士研究生. 主要研究方向為非線性系統控制. E-mail: wang11@snnu.edu.cn

                      趙志良:陜西師范大學數學與統計學院教授, 2012年獲中國科學技術大學數學科學學院博士學位. 主要研究方向為非線性系統控制, 有限時間控制, 自抗擾控制. 本文通信作者. E-mail: zhiliangzhao@snnu.edu.cn

                    Nonlinear Active Disturbance Rejection Attitude Control of Two-DOF Unmanned Helicopter

                    Funds: Supported by National Natural Science Foundation of China (61973202), State Key Laboratory of Synthetical Automation for Process Industries
                    More Information
                      Author Bio:

                      WANG Yi-Yi Master student at the School of Mathematics and Statistics, Shaanxi Normal University. Her main research interest is nonlinear systems control

                      ZHAO Zhi-Liang Professor at the School of Mathematics and Statistics, Shaanxi Normal University. He received his Ph. D. degree from the School of Mathematical Sciences, University of Science and Technology of China in 2012. His research interest covers nonlinear system control, finite-time control, and active disturbance rejection control. Corresponding author of this paper

                    • 摘要:

                      無人機高性能姿態控制的難題之一是無人機系統模型通常無法精確建立且受到復雜外部干擾的作用. 針對這一難題, 本文提出了二自由度無人直升機姿態控制的非線性自抗擾控制設計方法. 該方法的主要思想是將系統內部的未建模動態和外部干擾等不確定性因素作為“總擾動”, 利用輸入輸出信息在線觀測, 并在反饋控制環節對其進行補償. 本文發展了非線性擴張狀態觀測器與非線性反饋控制律用以提高控制品質. 本文嚴格證明了控制閉環系統的穩定性和收斂性, 并通過數值仿真驗證了理論結果的有效性. 數值結果顯示當量測輸出受噪音干擾時本文提出的方法優于線性自抗擾控制方法和滑??刂品椒?

                    • 圖  1  二自由度無人直升機簡化圖

                      Fig.  1  Simplified diagram of two degree of freedom unmanned helicopteropter

                      圖  2  第I組參數下不受噪聲污染時的數值結果

                      Fig.  2  Numerical results without noise pollution under parameters group I

                      圖  3  第I組參數下受噪聲污染時的數值結果

                      Fig.  3  Numerical results with noise pollution under parameters group I

                      圖  4  第II組參數下不受噪聲污染時的數值結果

                      Fig.  4  Numerical results without noise pollution under parameters group II

                      圖  5  第II組參數下受噪聲污染時的數值結果

                      Fig.  5  Numerical results with noise pollution under parameters group II

                      圖  6  第III組參數下不受噪聲污染時的數值結果

                      Fig.  6  Numerical results without noise pollution under parameters group III

                      圖  7  第III組參數下受噪聲污染時的數值結果

                      Fig.  7  Numerical results with noise pollution under parameters group III

                      表  1  三組系統參數

                      Table  1  Three sets of system parameters

                      參數 I II III
                      $\tau_{pp}\;({\rm{ {\rm{Nm/V} } } })$ 0.204 2.04 20.4
                      $\tau_{py}\;({\rm{Nm/V} })$ 0.0068 0.068 0.68
                      $\tau_{yy}\;({\rm{Nm/V} })$ 0.072 0.72 7.2
                      $\tau_{yp}\;({\rm{Nm/V} })$ 0.0219 0.219 2.19
                      $D_{p}\;(N/V)$ 0.8 8 80
                      $D_{y}\;(N/V)$ 0.318 3.18 31.8
                      $I_{p}\;({\rm{kg} }\cdot {\rm{m} }^{3})$ 0.0384 0.384 3.84
                      $I_{y}\;({\rm{kg} }\cdot {\rm{m} }^{3})$ 0.0432 0.432 4.32
                      $m \;({\rm{kg} })$ 1.3872 13.872 138.72
                      $l \;({\rm{m} })$ 0.186 1.86 18.6
                      $g\; ({\rm{m/s} }^{-2})$ 9.81 9.81 9.81
                      下載: 導出CSV
                      360彩票
                    • [1] Gao W N, Huang M Z, Jiang Z P, Chai T Y. Sampled-data-based adaptive optimal output-feedback control of a 2-degree-of-freedom helicopter. IET Control Theory & Applications, 2016, 10(12): 1440?1447
                      [2] Yu Z Q, Qu Y H, Zhang Y M. Safe control of trailing UAV in close formation flight against actuator fault and wake vortex effect. Aerospace Science and Technology, 2018, 77: 189?205 doi: 10.1016/j.ast.2018.01.028
                      [3] 王寧, 王永. 基于模糊不確定觀測器的四旋翼飛行器自適應動態面軌跡跟蹤控制. 自動化學報, 2018, 44(4): 685?695

                      Wang Ning, Wang Yong. Fuzzy uncertainty observer based adaptive dynamic surface control for trajectory tracking of a quadrotor. Acta Automatica Sinica, 2018, 44(4): 685?695
                      [4] Song Z K, Sun K B. Adaptive compensation control for attitude adjustment of quad-rotor unmanned aerial vehicle. ISA Transactions, 2017, 69: 242?255 doi: 10.1016/j.isatra.2017.04.003
                      [5] SaiCharanSagar A, Vaitheeswaran S M, Shendge P D. Uncertainity estimation based approach to attitude control of fixed wing UAV. IFAC-PapersOnLine, 2016, 49(1): 278?283 doi: 10.1016/j.ifacol.2016.03.066
                      [6] Derafa L, El Hadri A, Fridman L. External perturbation estimation based on super-twisting algorithm for attitude control of UAVs. IFAC Proceedings Volumes, 2012, 45(13): 746?752 doi: 10.3182/20120620-3-DK-2025.00067
                      [7] Humaidi A J, Hasan A F. Particle swarm optimization–based adaptive super-twisting sliding mode control design for 2-degree-of-freedom helicopter. Measurement and Control, 2019, 52(9?10): 1403?1419 doi: 10.1177/0020294019866863
                      [8] Zhong Y J, Zhang Y M, Zhang W, Zuo J Y, Zhan H. Robust actuator fault detection and diagnosis for a quadrotor UAV with external disturbances. IEEE Access, 2018, 6: 48169?48180 doi: 10.1109/ACCESS.2018.2867574
                      [9] Mu?oz F, González-Hernández I, Salazar S, Espinoza E S, Lozano R. Second order sliding mode controllers for altitude control of a quadrotor UAS: Real-time implementation in outdoor environments. Neurocomputing, 2017, 233: 61?71 doi: 10.1016/j.neucom.2016.08.111
                      [10] Guzey H M, Dierks T, Jagannathan S, Acar L. Modified consensus-based output feedback control of quadrotor UAV formations using neural networks. Journal of Intelligent & Robotic Systems, 2019, 94(1): 283?300
                      [11] Xin Y, Qin Z C, Sun J Q. Input-output tracking control of a 2-DOF laboratory helicopter with improved algebraic differential estimation. Mechanical Systems and Signal Processing, 2019, 116: 843?857 doi: 10.1016/j.ymssp.2018.07.027
                      [12] Ouyang Y C, Dong L, Xue L, Sun C Y. Adaptive control based on neural networks for an uncertain 2-DOF helicopter system with input deadzone and output constraints. IEEE/CAA Journal of Automatica Sinica, 2019, 6(3): 807?815 doi: 10.1109/JAS.2019.1911495
                      [13] Boukadida W, Benamor A, Messaoud H, Siarry H. Multi-objective design of optimal higher order sliding mode control for robust tracking of 2-DoF helicopter system based on metaheuristics. Aerospace Science and Technology, 2019, 91: 442?455 doi: 10.1016/j.ast.2019.05.037
                      [14] Sadala S P, Patre B M. A new continuous sliding mode control approach with actuator saturation for control of 2-DOF helicopter system. ISA Transactions, 2018, 74: 165?174 doi: 10.1016/j.isatra.2018.01.027
                      [15] Han J Q. From PID to active disturbance rejection control. IEEE Transactions on Industrial Electronics, 2009, 56(3): 900?906 doi: 10.1109/TIE.2008.2011621
                      [16] Dong L L, Zheng Q, Gao Z Q. On control system design for the conventional mode of operation of vibrational gyroscopes. IEEE Sensors Journal, 2008, 8(11): 1871?1878 doi: 10.1109/JSEN.2008.2006451
                      [17] Sun L, Li D H, Lee K Y. Enhanced decentralized PI control for fluidized bed combustor via advanced disturbance observer. Control Engineering Practice, 2015, 42: 128?139 doi: 10.1016/j.conengprac.2015.05.014
                      [18] Song K, Hao T Y, Xie H. Disturbance rejection control of air-fuel ratio with transport-delay in engines. Control Engineering Practice, 2018, 79: 36?49 doi: 10.1016/j.conengprac.2018.06.009
                      [19] 康瑩, 李東海, 老大中. 航天器姿態的自抗擾控制與滑??刂频男阅鼙容^. 控制理論與應用, 2013, 30(12): 1623?1629 doi: 10.7641/CTA.2013.30993

                      Kang Ying, Li Dong-Hai, Lao Da-Zhong. Performance comparison of active disturbance rejection control and sliding mode control in spacecraft attitude control. Control Theory & Applications, 2013, 30(12): 1623?1629 doi: 10.7641/CTA.2013.30993
                      [20] Ma Z Y, Zhu X P, Zhou Z. On-ground lateral direction control for an unswept flying-wing UAV. The Aeronautical Journal, 2019, 123(1261): 416?432 doi: 10.1017/aer.2018.167
                      [21] Zhang S C, Xue X Y, Chen C, Sun Z, Sun T. Development of a low-cost quadrotor UAV based on ADRC for agricultural remote sensing. International Journal of Agricultural and Biological Engineering, 2019, 12(4): 82?87 doi: 10.25165/j.ijabe.20191204.4641
                      [22] Yu B, Kim S, Suk J. Robust control based on ADRC and DOBC for small-scale helicopter. IFAC-PapersOnLine, 2019, 52(12): 140?145 doi: 10.1016/j.ifacol.2019.11.183
                      [23] Freidovich L B, Khalil H K. Performance recovery of feedback-linearization-based designs. IEEE Transactions on Automatic Control, 2008, 53(10): 2324?2334 doi: 10.1109/TAC.2008.2006821
                      [24] 陳增強, 孫明瑋, 楊瑞光. 線性自抗擾控制器的穩定性研究. 自動化學報, 2013, 39(5): 574?580

                      Chen Zeng-Qiang, Sun Ming-Wei, Yang Rui-Guang. On the stability of linear active disturbance rejection control. Acta Automatica Sinica, 2013, 39(5): 574?580
                      [25] Xue W C, Huang Y. Performance analysis of active disturbance rejection tracking control for a class of uncertain LTI systems. ISA Transactions, 2015, 58: 133?154 doi: 10.1016/j.isatra.2015.05.001
                      [26] Pu Z Q, Yuan R Y, Yi J Q, Tan X M. A class of adaptive extended state observers for nonlinear disturbed systems. IEEE Transactions on Industrial Electronics, 2015, 62(9): 5858?5869 doi: 10.1109/TIE.2015.2448060
                      [27] Shao S, Gao Z. On the conditions of exponential stability in active disturbance rejection control based on singular perturbation analysis. International Journal of Control, 2017, 90(10): 2085?2097 doi: 10.1080/00207179.2016.1236217
                      [28] Jiang T T, Huang C D, Guo L. Control of uncertain nonlinear systems based on observers and estimators. Automatica, 2015, 59: 35?47 doi: 10.1016/j.automatica.2015.06.012
                      [29] 金輝宇, 劉麗麗, 蘭維瑤. 二階系統線性自抗擾控制的穩定性條件. 自動化學報, 2018, 44(9): 1725?1728

                      Jin Hui-Yu, Liu Li-Li, Lan Wei-Yao. On stability condition of linear active disturbance rejection control for second-order systems. Acta Automatica Sinica, 2018, 44(9): 1725?1728
                      [30] Guo B Z, Zhao Z L. Active Disturbance Rejection Control for Nonlinear Systems: An Introduction. New Jersey: John Wiley & Sons, 2016.
                      [31] Fliess M, Levine J, Martin P, Rouchon P. A Lie-Backlund approach to equivalence and flatness of nonlinear systems. IEEE Transactions on Automatic Control, 1999, 44(5): 922?937 doi: 10.1109/9.763209
                      [32] She J H, Fang M X, Ohyama Y, Hashimoto H, Wu M. Improving disturbance-rejection performance based on an equivalent-input-disturbance approach. IEEE Transactions on Industrial Electronics, 2008, 55(1): 380?389 doi: 10.1109/TIE.2007.905976
                      [33] Zhong Q C, Kuperman A, Stobart R K. Design of UDE-based controllers from their two-degree-of-freedom nature. International Journal of Robust and Nonlinear Control, 2011, 21(17): 1994?2008 doi: 10.1002/rnc.1674
                      [34] Chen W H, Yang J, Guo L, Li S H. Disturbance-observer-based control and related methods: An overview. IEEE Transactions on Industrial Electronics, 2016, 63(2): 1083?1095 doi: 10.1109/TIE.2015.2478397
                      [35] 李杰, 齊曉慧, 夏元清, 高志強. 線性/非線性自抗擾切換控制方法研究. 自動化學報, 2016, 42(2): 202?212

                      Li Jie, Qi Xiao-Hui, Xia Yuan-Qing, Gao Zhi-Qiang. On linear/nonlinear active disturbance rejection switching control. Acta Automatica Sinica, 2016, 42(2): 202?212
                      [36] 李向陽, 哀薇, 田森平. 慣性串聯系統的自抗擾控制. 自動化學報, 2018, 44(3): 562?568

                      Li Xiang-Yang, Ai Wei, Tian Sen-Ping. Active disturbance rejection control of cascade inertia systems. Acta Automatica Sinica, 2018, 44(3): 562?568
                      [37] Li S H, Yang J, Chen W H, Chen X S. Disturbance Observer-Based Control: Methods and Applications. Boca Raton: CRC Press, 2014.
                      [38] Bai W Y, Chen S, Huang Y, Guo B Z, Wu Z H. Observers and observability for uncertain nonlinear systems: A necessary and sufficient condition. International Journal of Robust and Nonlinear Control, 2019, 29(10): 2960?2977 doi: 10.1002/rnc.4531
                      [39] Guo B Z, Wu Z H, Zhou H C. Active disturbance rejection control approach to output-feedback stabilization of a class of uncertain nonlinear systems subject to stochastic disturbance. IEEE Transactions on Automatic Control, 2016, 61(6): 1613?1618 doi: 10.1109/TAC.2015.2471815
                      [40] Zhao Z L, Guo B Z. A nonlinear extended state observer based on fractional power functions. Automatica, 2017, 81: 286?296 doi: 10.1016/j.automatica.2017.03.002
                      [41] Bhat S P, Bernstein D S. Geometric homogeneity with applications to finite-time stability. Mathematics of Control, Signals and Systems, 2005, 17(2): 101?127 doi: 10.1007/s00498-005-0151-x
                      [42] Zhao Z L, Jiang Z P. Finite-time output feedback stabilization of lower-triangular nonlinear systems. Automatica, 2018, 96: 259?269 doi: 10.1016/j.automatica.2018.07.003
                      [43] Zhao Z L, Guo B Z. Active disturbance rejection control approach to stabilization of lower triangular systems with uncertainty. International Journal of Robust and Nonlinear Control, 2016, 26(11): 2314?2337 doi: 10.1002/rnc.3414
                      [44] Xue W C, Bai W Y, Yang S, Song K, Huang Y, Xie H. ADRC with adaptive extended state observer and its application to air-fuel ratio control in gasoline engines. IEEE Transactions on Industrial Electronics, 2015, 62(9): 5847?5857 doi: 10.1109/TIE.2015.2435004
                    • 加載中
                    圖(7) / 表(1)
                    計量
                    • 文章訪問數:  90
                    • HTML全文瀏覽量:  143
                    • PDF下載量:  66
                    • 被引次數: 0
                    出版歷程
                    • 收稿日期:  2019-07-09
                    • 錄用日期:  2020-01-09
                    • 刊出日期:  2021-08-20

                    目錄

                      /

                      返回文章
                      返回