2.793

                    2018影響因子

                    (CJCR)

                    • 中文核心
                    • EI
                    • 中國科技核心
                    • Scopus
                    • CSCD
                    • 英國科學文摘

                    留言板

                    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

                    姓名
                    郵箱
                    手機號碼
                    標題
                    留言內容
                    驗證碼

                    魚類群體運動的元胞自動機模型中的最小勢能原理

                    陸興遠 袁衛鋒

                    陸興遠, 袁衛鋒. 魚類群體運動的元胞自動機模型中的最小勢能原理. 自動化學報, 2019, 45(x): 1?6 doi: 10.16383/j.aas.c190568
                    引用本文: 陸興遠, 袁衛鋒. 魚類群體運動的元胞自動機模型中的最小勢能原理. 自動化學報, 2019, 45(x): 1?6 doi: 10.16383/j.aas.c190568
                    Lu Xing-Yuan, Yuan Wei-Feng. Principle of least potential energy in the cellular automaton model for collective motion of fish schools. Acta Automatica Sinica, 2019, 45(x): 1?6 doi: 10.16383/j.aas.c190568
                    Citation: Lu Xing-Yuan, Yuan Wei-Feng. Principle of least potential energy in the cellular automaton model for collective motion of fish schools. Acta Automatica Sinica, 2019, 45(x): 1?6 doi: 10.16383/j.aas.c190568

                    魚類群體運動的元胞自動機模型中的最小勢能原理

                    doi: 10.16383/j.aas.c190568
                    詳細信息
                      作者簡介:

                      陸興遠:西南科技大學制造科學與工程學院研究生. 主要研究方向為魚類群體運動. E-mail: 799937621@qq.com

                      袁衛鋒:西南科技大學研究員, 目前主要研究方向為固體力學計算方法, 納米復合材料的力-電特性和環境小能量采集. 本文通信作者. E-mail: yuanweifeng@swust.edu.cn

                    Principle of least potential energy in the cellular automaton model for collective motion of fish schools

                    • 摘要: 群體運動是自然界中一種常見的生物行為. 在一定的環境條件下, 社會有機體會表現出不同的集體運動形態. 其中, 旋轉是魚群中常見的群體運動. 但是, 雖然研究人員對魚群的運動進行過一系列的研究, 這種旋轉行為的機理尚不清楚. 本研究假定魚群的運動模式受勢能的支配, 相應提出了魚類個體運動的勢函數并將之融合到元胞自動機中以模擬魚群的運動. 數值模擬表明, 有限空間內魚群運動時會形成多種形狀, 但當此生物系統按照能量最小原則發展時, 其運動形態最終可能演化成為一個漩渦. 數值模擬與針對紅斑馬魚的觀察之間的比較驗證了本模型的合理性. 能量最小原理是自然界的基本定律之一, 而勢能函數的建立定義了魚類個體與環境之間的關系. 因此, 本研究為深入理解群體運動規律提供了新視角, 表明從流體力學上進一步探究魚群運動的物理機理是一個具有潛力的研究方向.
                    • 圖  1  魚的模型

                      Fig.  1  Model of fish

                      圖  3  勢能函數的定義

                      Fig.  3  Functions defined for potential

                      圖  2  三維空間中虛擬魚中的角度關系.

                      Fig.  2  The angular relationship in the potential energy of the fish in three-dimension

                      圖  4  真實紅斑馬魚群中的旋轉群體狀態.

                      Fig.  4  Whirling state in real fish schools of red zebrafish

                      圖  5  數值模擬過程中旋轉的群體狀態.

                      Fig.  5  Whirling state in numerical simulation.

                      圖  6  kd2取值不同時虛擬魚群在第730時間步的狀態.

                      Fig.  6  the status of fish schools at 730th time step subject to different kd2 values.

                      360彩票
                    • [1] 1 Suzuki T N, Kutsukake N. Foraging intention affects whether willow tits call to attract members of mixed-species flocks. Royal Society Open Science, 2017, 4(6): 170222 doi: 10.1098/rsos.170222
                      [2] 2 Fischhoff I R, Sundaresan S R, Cordingley J, Larkin H M, Sellier M J, Rubenstein D I. Social relationships and reproductive state influence leadership roles in movements of plains zebra, equus burchellii. Animal Behaviour, 2007, 73(5): 825?831 doi: 10.1016/j.anbehav.2006.10.012
                      [3] 柳玲飛, 周應祺, 錢衛國, 趙媛, 王明. 紅鼻魚群體結構的數學建模與仿真可視化. 水產學報, 2010, 34(12): 1869?1876

                      3 Liu Ling-Fei, Zhou Ying-Qi, Qian Wei-Guo, Zhao Yuan, Wang Ming. Modeling and simulation on schooling structure of hemigrammus bleheri. Journal of Fisheries of China, 2010, 34(12): 1869?1876
                      [4] 班曉娟, 寧淑榮, 涂序彥. 人工魚群高級自組織行為研究. 自動化學報, 2008, 34(10): 1327?1332

                      4 Ban Xiao-Juan, Ning Shu-Rong, Tu Xu-Yan. Research on advanced self-organization behavior for artificial fish school. Acta Automatica Sinica, 2008, 34(10): 1327?1332
                      [5] 5 Koch A L, White D. The social lifestyle of myxobacteria. Bioessays, 2015, 20(12): 1030?1038
                      [6] 6 Reynolds C W. Flocks, herds, and schools: A distributed behavioral model. ACM SIGGRAPH Computer Graphics, 1987, 21(4): 25?34 doi: 10.1145/37402.37406
                      [7] 7 Zienkiewicz A K, Ladu F, Barton D A W, Porfiri M, Bernardo M D. Data-driven modelling of social forces and collective behaviour in zebrafish. Journal of Theoretical Biology, 2018, 443: 39?51 doi: 10.1016/j.jtbi.2018.01.011
                      [8] 楊永娟. 用java實現魚群游動模擬系統. 安徽理工大學學報(自科版), 2006, 26(4): 67?71

                      8 Yang Yong-Juan. Realization of fish-swimming simulation system with java. Journal of Anhui University of science and Technology (Natural Science), 2006, 26(4): 67?71
                      [9] 9 Dai L, He G, Zhang X, Zhang X. Stable formations of self-propelled fish-like swimmers induced by hydrodynamic interactions. Journal of the Royal Society Interface, 2018, 15(147)
                      [10] 10 Nagy M, ákos Z, Biro D, Vicsek T. Hierarchical group dynamics in pigeon flocks. Nature, 2010, 464(7290): 890?893 doi: 10.1038/nature08891
                      [11] 11 Gueron S, Levin S A, Rubenstein D I. The dynamics of herds: from individuals to aggregations. Journal of Theoretical Biology, 1996, 182(1): 85?98 doi: 10.1006/jtbi.1996.0144
                      [12] 12 Couzin I D, Krause J. Self-organization and collective behavior in vertebrates. Advances in the Study of Behavior, 2003, 32: 1?75 doi: 10.1016/S0065-3454(03)01001-5
                      [13] 13 Li S, Batra R, Brown D, Chang H D, Ranganathan N, Hoberman C, Rus D, Lipson H. Particle robotics based on statistical mechanics of loosely coupled components. Nature, 2019, 567(7748)
                      [14] 雷斌. 群體機器人系統合作控制問題研究. 武漢理工大學, 2009.

                      Lei Bin. Research on cooperative control problem of swarm robots system[Master dissertation]. Wuhan University of Technology, 2009.
                      [15] Neumann J V, Burks A W. Theory of Self-Reproduction Automata. University of Illinois press, Urbana, 1966.
                      [16] 16 Bertin E, Droz M, Grégoire G. Hydrodynamic equations for self-propelled particles: microscopic derivation and stability analysis. Journal of Physics A: Mathematical and Theoretical, 2009, 42(44): 445001 doi: 10.1088/1751-8113/42/44/445001
                      [17] 17 Yuan W F, Tan K H. A model for simulation of crowd behaviour in the evacuation from a smoke-filled compartment. Physica A Statistical Mechanics & Its Applications, 2011, 390(23-24): 4210?4218
                      [18] 18 Pattanayak S, Mishra S. Collection of polar self-propelled particles with a modified alignment interaction. Journal of Physics Communications, 2018, 2(4): 045007 doi: 10.1088/2399-6528/aab8cc
                      [19] 19 Bertrand L, Colby T, Christa W, Tammy T, Shea Q, David S. Motion cues tune social influence in shoaling fish. Scientific Reports, 2018, 8(1): 9785 doi: 10.1038/s41598-018-27807-1
                      [20] 20 Ballerini M, Cabibbo N, Candelier R, Cavagna A, Cisbani E, Giardina I, Lecomte V, Orlandi A, Parisi G, Procaccini A, Viale M, Zdravkovic V. Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study. Proceedings of the National Academy of Sciences, 2008, 105(4): 1232?1237 doi: 10.1073/pnas.0711437105
                      [21] 21 Maria D M D, Miranda M, Alvarez S J, Gurarie E, Fagan W F, Penteriani V, Virgilio A D, Morales J M. The importance of individual variation in the dynamics of animal collective movements. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373(1746): 20170008 doi: 10.1098/rstb.2017.0008
                    • 加載中
                    計量
                    • 文章訪問數:  2001
                    • HTML全文瀏覽量:  1120
                    • 被引次數: 0
                    出版歷程
                    • 網絡出版日期:  2019-12-19

                    目錄

                      /

                      返回文章
                      返回