2.793

                    2018影響因子

                    (CJCR)

                    • 中文核心
                    • EI
                    • 中國科技核心
                    • Scopus
                    • CSCD
                    • 英國科學文摘

                    留言板

                    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

                    姓名
                    郵箱
                    手機號碼
                    標題
                    留言內容
                    驗證碼

                    分布參數系統源控制系統設計

                    周筆鋒 羅毅平 唐果寧

                    周筆鋒, 羅毅平, 唐果寧. 分布參數系統源控制系統設計. 自動化學報, 2019, 45(x): 1?6 doi: 10.16383/j.aas.c190612
                    引用本文: 周筆鋒, 羅毅平, 唐果寧. 分布參數系統源控制系統設計. 自動化學報, 2019, 45(x): 1?6 doi: 10.16383/j.aas.c190612
                    Zhou Bi-Feng, Luo Yi-Ping, Tang Guo-Ning. Distributed Parameter Systems of Source Control. Acta Automatica Sinica, 2019, 45(x): 1?6 doi: 10.16383/j.aas.c190612
                    Citation: Zhou Bi-Feng, Luo Yi-Ping, Tang Guo-Ning. Distributed Parameter Systems of Source Control. Acta Automatica Sinica, 2019, 45(x): 1?6 doi: 10.16383/j.aas.c190612

                    分布參數系統源控制系統設計

                    doi: 10.16383/j.aas.c190612
                    基金項目: 國家自然科學基金(11972156)資助, 湖南省教育廳科學研究項目(19C0418)資助
                    詳細信息
                      作者簡介:

                      周筆鋒:2015年獲得湖南工程學院碩士學位. 目前為湖南科技大學博士研究生, 主要研究方向為復雜網絡系統, 分布參數系統, 永磁同步電機失磁故障診斷.E-mail: zhoubifeng99@163.com

                      羅毅平:湖南工程學院教授. 2006年獲得華南理工大學博士學位. 主要研究方向為復雜網絡系統, 分布參數系統. 本文通信作者.E-mail: lyp8688@sohu.com

                      唐果寧:湖南科技大學教授. 中國機械工程學會高級會員, 主要研究方向為永磁同步電機失磁故障診斷, 摩擦磨損及耐磨材料研究.E-mail: tangguoning99@163.com

                    Distributed Parameter Systems of Source Control

                    Funds: Supported by National Natural Science Foundation of China (11972156), Supported by Science Research Projects of Hunan Province Education Department (19C0418)
                    • 摘要: 針對一類分布參數系統, 提出了源控制方法. 將構成分布參數系統的空間分成若干分, 每份為一個節點, 在所有的節點中, 將能產生量變源頭的節點定義為源節點, 跟隨源節點變化的節點為跟隨節點, 以此構建分布參數系統模型. 對于源節點, 根據經驗函數結合反饋偏差調節設計控制器, 對跟隨節點考慮源節點控制的逸散作用控制. 利用Lyapunov穩定性理論并結合LMI處理方法, 得出了分布式參數系統穩定源控制器存在的充分條件. 最后結合所給條件, 給出一個數值仿真說明其有效性.
                    • 圖  1  系統源節點$W_{L}(x,t)$狀態圖

                      Fig.  1  the system state of source nodes $W_{L}(x,t)$

                      圖  2  系統跟隨節點$W_{g}(x,t)$狀態圖

                      Fig.  2  the system state of following nodes $W_{g}(x,t)$

                      360彩票
                    • [1] Ray W H. Advanced Process Control[M]. New York: McGraw-Hill, 1981
                      [2] Christofides P D. Nonlinear and Robust Control of PDE Systems[M]. Boston: Birkhauser Boston, 2001.
                      [3] 3 Deng H, Li H X, Chen G R. Spectral approximation based intelligent modeling for distributed thermal processes. IEEE Transactions on Control Systems Technology, 2005, 13: 686?700 doi: 10.1109/TCST.2005.847329
                      [4] 4 Padhi R, Ali S F. An account of chronological developments in control of distributed parameter systems. Annual Reviews in Control, 2009, 33: 59?68 doi: 10.1016/j.arcontrol.2009.01.003
                      [5] Baillieul J. Linearized models for the control of rotating beams[C]//Proceedings of the 27th IEEE Conference on Decision and Control. IEEE, 1988: 1726-1731.
                      [6] 6 Najar F, Choura S, Abdelrahman E M, et al. Dynamic analysis of variable-geometry electrostatic microactuators. Journal of Micromechanics Microengineering, 2006, 16: 2449?2457 doi: 10.1088/0960-1317/16/11/028
                      [7] 7 Ly C, Doiron B. Correction: Divisive Gain Modulation with Dynamic Stimuli in Integrate-and-Fire Neurons. Plos Computational Biology, 2009, 5(4): e1000365 doi: 10.1371/journal.pcbi.1000365
                      [8] 8 Lan Y H, Wu B, Shi Y X, et al. Iterative learning based consensus control for distributed parameter multi-agent systems with time-delay. Neurocomputing, 2019, 357(10): 77?85
                      [9] 9 Lan Y H, Xia J J, Xia Y P, et al. Iterative learning consensus control for multi-agent systems with fractional order distributed parameter models. Int. J. Control Autom. Syst, 2019, 17(4): 1?11
                      [10] 10 Luo Y P, Xia W H, Liu G R, et al. LMI Approach to Exponential Stabilization of Distributed Parameter Control Systems with Delay. Acta Automatica Sinica, 2009, 35: 299?304
                      [11] 11 Ji H H, Cui B T, LiuX Z. Adaptive control of Markov jump distributed parameter systems via model reference. Fuzzy Sets and Systems, 2019 doi: 10.1016/j.fss.2019.06.016
                      [12] 12 Wang Z P, Wu H N. Finite dimensional guaranteed cost sampled-data fuzzy control for a class of nonlinear distributed parameter systems. Information Sciences An International Journal, 2016, 327: 21?39 doi: 10.1016/j.ins.2015.08.009
                      [13] 13 Zhang X M, Wu H N. H∞ boundary control for a class of nonlinear stochastic parabolic distributed parameter systems. International Journal of Robust and Nonlinear Control, 2019, 29(14): 4665?4680 doi: 10.1002/rnc.4646
                      [14] 周延九, 崔寶同. 一類半線性拋物型偏微分方程描述的分布參數系統的邊界控制[J/OL]. 控制與決策: 1-9. DOI: 10.13195/j.kzyjc.2018.0289.

                      Zhou Y J, CUI B T. Boundary control of the distributed parameter systems described by a class of semi-linear parabolic partial differential equations[J/OL]. Control and Decision, 1-9. DOI: 10.13195/j.kzyjc.2018.0289.
                      [15] 15 Wang J W, Wu H N, Sun C Y. Local exponential stabilization via boundary feedback controllers for a class of unstable semi-linear parabolic distributed parameter processes. Journal of the Franklin Institute, 2017, 354(13): 5221?5244 doi: 10.1016/j.jfranklin.2017.05.044
                      [16] 栗小麗, 李凱, 劉飛. 雙曲線型分布參數系統邊界控制下的干擾解耦. 控制與決策, 2016, 31(2): 256?260

                      16 Luan X L, Li K, Liu F. Disturbance decoupling for hyperbolic-type distributed parameter systems with boundary control. Control and Decision, 2016, 31(2): 256?260
                      [17] 周筆鋒, 羅毅平. 時滯分布參數系統中和控制器設計. 自動化學報, 2018, 44(12): 2222?2227

                      17 Zhou B F, Luo Y P. Distributed parameter systems of neutralization control with delay. Acta Automatica Sinica, 2018, 44(12): 2222?2227
                      [18] 催寶同, 樓旭陽. 時滯分布參數系統理論及其應用[M]. 北京: 國防工業出版社, 2009: 8-12.

                      Cui B T, Lou X Y. Theory and application of time-delay distributed parameter system[M]. Beijing: National Defense Industry press, 2009: 8-12
                      [19] 19 Song Q, Cao J. On pinning synchronization of directed and undirected complex dynamical networks. IEEE Transactions on Circuits Systems Part I Regular Papers, 2010, 57: 672?680 doi: 10.1109/TCSI.2009.2024971
                    • 加載中
                    計量
                    • 文章訪問數:  1099
                    • HTML全文瀏覽量:  539
                    • 被引次數: 0
                    出版歷程
                    • 收稿日期:  2019-09-02
                    • 錄用日期:  2019-12-23
                    • 網絡出版日期:  2020-01-02

                    目錄

                      /

                      返回文章
                      返回