2.793

                    2018影響因子

                    (CJCR)

                    • 中文核心
                    • EI
                    • 中國科技核心
                    • Scopus
                    • CSCD
                    • 英國科學文摘

                    留言板

                    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

                    姓名
                    郵箱
                    手機號碼
                    標題
                    留言內容
                    驗證碼

                    狀態轉移算法原理與應用

                    周曉君 陽春華 桂衛華

                    周曉君, 陽春華, 桂衛華. 狀態轉移算法原理與應用. 自動化學報, 2020, 46(11): 2260?2274 doi: 10.16383/j.aas.c190624
                    引用本文: 周曉君, 陽春華, 桂衛華. 狀態轉移算法原理與應用. 自動化學報, 2020, 46(11): 2260?2274 doi: 10.16383/j.aas.c190624
                    Zhou Xiao-Jun, Yang Chun-Hua, Gui Wei-Hua. The principle of state transition algorithm and its applications. Acta Automatica Sinica, 2020, 46(11): 2260?2274 doi: 10.16383/j.aas.c190624
                    Citation: Zhou Xiao-Jun, Yang Chun-Hua, Gui Wei-Hua. The principle of state transition algorithm and its applications. Acta Automatica Sinica, 2020, 46(11): 2260?2274 doi: 10.16383/j.aas.c190624

                    狀態轉移算法原理與應用

                    doi: 10.16383/j.aas.c190624
                    基金項目: 國家自然科學基金(61873285, 61621062, 61860206014), 111項目(B17048), 湖南省自然科學基金(2018JJ3683)資助
                    詳細信息
                      作者簡介:

                      周曉君:中南大學自動化學院副教授. 2014年獲得澳大利亞聯邦大學應用數學博士學位. 主要研究方向為復雜工業過程建模、優化與控制, 優化理論與算法, 狀態轉移算法, 對偶理論及其應用. E-mail: michael.x.zhou@csu.edu.cn

                      陽春華:中南大學自動化學院教授. 2002年獲得中南大學博士學位. 主要研究方向為復雜工業過程建模與優化, 分析檢測與自動化裝置, 智能自動化系統. 本文通信作者. E-mail: ychh@csu.edu.cn

                      桂衛華:中國工程院院士, 中南大學自動化學院教授. 1981年獲得中南礦冶學院碩士學位. 主要研究方向為流程工業智能制造, 復雜工業過程建模, 優化與控制應用和知識自動化. E-mail: gwh@csu.edu.cn

                    The Principle of State Transition Algorithm and Its Applications

                    Funds: Supported by the National Natural Science Foundation of China (61873285, 61621062, 61860206014), the 111 Project (B17048) and Hunan Provincial Natural Science Foundation of China (2018JJ3683)
                    • 摘要: 狀態轉移算法是基于狀態和狀態轉移的概念及現代控制理論中狀態空間表示法提出的一種智能型隨機性全局優化方法, 由于其優良的全局搜索能力和快速收斂性, 在許多優化問題中得到了很好的應用. 本文系統地闡述了狀態轉移算法的基本原理和內在特性, 詳細介紹了狀態轉移算法的演變與提升, 包括離散、約束與多目標狀態轉移算法, 狀態轉移算法參數分析與優化、算子拓展與智能化策略等內容, 并從非線性系統辨識、工業過程控制、機器學習與數據挖掘等方面重點介紹了狀態轉移算法的應用.
                    • 圖  1  狀態變換算子快速性示意圖

                      Fig.  1  The rapidity of state transformation operators

                      圖  2  旋轉變換算子可控示意圖

                      Fig.  2  The controllability of rotation transformation operator

                      圖  3  軸向搜索變換算子可控示意圖

                      Fig.  3  The controllability of axesion transformation operator

                      圖  4  下標表示法示意圖

                      Fig.  4  Illustration of subscript representation

                      圖  5  離散狀態變換算子示意圖

                      Fig.  5  Illustration of discrete state transformation operators

                      圖  6  “二次狀態轉移” 策略

                      Fig.  6  “Second transition” strategy

                      圖  7  “冒險與恢復” 策略

                      Fig.  7  “Risk and restoration in probability” strategy

                      圖  8  “停滯回溯” 策略

                      Fig.  8  “Stagnation backtracking” strategy

                      360彩票
                    • [1] Floudas C A, Gounaris C E. A review of recent advances in global optimization. Journal of Global Optimization, 2009, 45(1): 3?38 doi: 10.1007/s10898-008-9332-8
                      [2] Tawarmalani M, Sahinidis N V. A polyhedral branch-and-cut approach to global optimization. Mathematical Programming, 2005, 103(2): 225?249 doi: 10.1007/s10107-005-0581-8
                      [3] Gao D Y. Canonical duality theory: Unified understanding and generalized solution for global optimization problems. Computers & Chemical Engineering, 2009, 33(12): 1964?1972
                      [4] Zhou X J, Yang C H, Gui W H. State transition algorithm. Journal of Industrial and Management Optimization, 2012, 8(4): 1039?1056 doi: 10.3934/jimo.2012.8.1039
                      [5] Zhou X J, Gao D Y, Yang C H. A comparative study of state transition algorithm with harmony search and artificial bee colony. In: Proceedings of the 8th International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA), 2013. Berlin, Heidelberg: Springer, 2013. 651?659
                      [6] Zhou X J, Yang C H, Gui W H. A matlab toolbox for continuous state transition algorithm. In: Proceedings of the 35th Chinese Control Conference. Chengdu, China: IEEE, 2016. 9172?9177
                      [7] Zhou X J, Yang C H, Gui W H. A comparative study of STA on large scale global optimization. In: Proceedings of the 12th World Congress on Intelligent Control and Automation. Guilin, China: IEEE, 2016. 2115?2119
                      [8] Zhou X J, Gao D Y, Yang C H, Gui W H. Discrete state transition algorithm for unconstrained integer optimization problems. Neurocomputing, 2016, 173: 864?874 doi: 10.1016/j.neucom.2015.08.041
                      [9] 陽春華, 唐小林, 周曉君, 桂衛華. 一種求解旅行商問題的離散狀態轉移算法. 控制理論與應用, 2013, 30(8): 1040?1046 doi: 10.7641/CTA.2013.12167

                      Yang Chun-Hua, Tang Xiao-Lin, Zhou Xiao-Jun, Gui Wei-Hua. A discrete state transition algorithm for traveling salesman problem. Control Theory & Applications, 2013, 30(8): 1040?1046 doi: 10.7641/CTA.2013.12167
                      [10] 董天雪, 陽春華, 周曉君, 桂衛華. 一種求解企業員工指派問題的離散狀態轉移算法. 控制理論與應用, 2016, 33(10): 1378?1388 doi: 10.7641/CTA.2016.50982

                      Dong Tian-Xue, Yang Chun-Hua, Zhou Xiao-Jun, Gui Wei-Hua. A novel discrete state transition algorithm for staff assignment problem. Control Theory & Applications, 2016, 33(10): 1378?1388 doi: 10.7641/CTA.2016.50982
                      [11] Han J, Dong T X, Zhou X J, Yang C H, Gui W H. State transition algorithm for constrained optimization problems. In: Proceedings of the 33rd Chinese Control Conference. Nanjing, China: IEEE, 2014. 7543?7548
                      [12] Han J, Yang C H, Zhou X J, Gui W H. A two-stage state transition algorithm for constrained engineering optimization problems. International Journal of Control, Automation and Systems, 2018, 16(2): 522?534 doi: 10.1007/s12555-016-0338-6
                      [13] Zhou X J, Long J P, Xu C C, Jia G B. An external archive-based constrained state transition algorithm for optimal power dispatch. Complexity, 2019, 2019: 4727168
                      [14] Zhou J J, Zhou X J, Yang C H, Gui W H. A multi-objective state transition algorithm for continuous optimization. In: Proceedings of the 36th Chinese Control Conference. Dalian, China: IEEE, 2017. 9859?9864
                      [15] Zhou X J, Zhou J J, Yang C H, Gui W H. Set-point tracking and multi-objective optimization-based PID control for the goethite process. IEEE Access, 2018, 6: 36683?36698 doi: 10.1109/ACCESS.2018.2847641
                      [16] Zhou X J, Hanoun S, Gao D Y, Nahavandi S. A multiobjective state transition algorithm for single machine scheduling. Advances in Global Optimization. Cham, Germany: Springer, 2015. 79?88
                      [17] 周曉君, 周佳佳, 徐沖沖. 一種基于分解的多目標狀態轉移優化方法及系統, 中國CN201910313379.4, 2019年8月23日.

                      Zhou Xiao-Jun, Zhou Jia-Jia, Xu Chong-Chong. Decomposition-based Multi-objective State Transition Optimization Method and System, China CN201910313379.4, August 23, 2019
                      [18] Zhou X J, Yang C H, Gui W H. A statistical study on parameter selection of operators in continuous state transition algorithm. IEEE Transactions on Cybernetics, 2019, 49(10): 3722?3730 doi: 10.1109/TCYB.2018.2850350
                      [19] Huang M, Zhou X J, Huang T W, Yang C H, Gui W H. Dynamic optimization based on state transition algorithm for copper removal process. Neural Computing and Applications, 2019, 31(7): 2827?2839 doi: 10.1007/s00521-017-3232-0
                      [20] Zhou X J, Shi P, Lim C C, Yang C H, Gui W H. A dynamic state transition algorithm with application to sensor network localization. Neurocomputing, 2018, 273: 237?250 doi: 10.1016/j.neucom.2017.08.010
                      [21] Wang Y L, He H M, Zhou X J, Yang C H, Xie Y F. Optimization of both operating costs and energy efficiency in the alumina evaporation process by a multi-objective state transition algorithm. The Canadian Journal of Chemical Engineering, 2016, 94(1): 53?65 doi: 10.1002/cjce.22353
                      [22] Wang C, Zhang H L, Fan W H. Volterra Series identification based on state transition algorithm with orthogonal transformation. Telkomnika, 2016, 14(1): 171?180 doi: 10.12928/telkomnika.v14i1.2663
                      [23] Han X X, Dong Y C, Yue L, Xu Q X. State transition simulated annealing algorithm for discrete-continuous optimization problems. IEEE Access, 2019, 7: 44391?44403 doi: 10.1109/ACCESS.2019.2908961
                      [24] Zhou X J, Yang C H, Gui W H. Nonlinear system identification and control using state transition algorithm. Applied Mathematics and Computation, 2014, 226: 169?179 doi: 10.1016/j.amc.2013.09.055
                      [25] Bartczuk ?, Dziwiński P, Red’ko V G. The concept on nonlinear modelling of dynamic objects based on state transition algorithm and genetic programming. In: Proceedings of the 16th International Conference on Artificial Intelligence and Soft Computing. Zakopane, Poland: Springer, 2017. 209?220
                      [26] 王聰, 張宏立. 基于混沌策略狀態轉移算法的混沌系統參數辨識. 計算機應用研究, 2016, 33(5): 1346?1349 doi: 10.3969/j.issn.1001-3695.2016.05.015

                      Wang Cong, Zhang Hong-Li. Parameter identification in chaotic systems based on state transition algorithm combined with chaotic strategy. Application Research of Computers, 2016, 33(5): 1346?1349 doi: 10.3969/j.issn.1001-3695.2016.05.015
                      [27] Wang Y L, Peng K, Yuan X F, Chen G Y, Li L. Parameter identification for breakage distribution function of bauxite based on state transition algorithm. In: Proceedings of the 6th International Symposium on Advanced Control of Industrial Processes. Taipei, China: IEEE, 2017. 251?256
                      [28] Xie Y F, Wei S M, Wang X L, Xie S, Yang C H. A new prediction model based on the leaching rate kinetics in the alumina digestion process. Hydrometallurgy, 2016, 164: 7?14 doi: 10.1016/j.hydromet.2016.05.005
                      [29] 閆雨晴, 謝永芳, 王曉麗, 尉思謎, 張杏嬋. 雙流法溶出過程操作參數優化方法. 化工學報, 2017, 68(3): 1014?1022

                      Yan Yu-Qing, Xie Yong-Fang, Wang Xiao-Li, Wei Si-Mi, Zhang Xing-Chan. Optimization method of double-stream alumina digestion process parameters. CIESC Journal, 2017, 68(3): 1014?1022
                      [30] Rajalakshmi M, Karthik C, Jeyadevi S. Constraint STA optimization for nonlinear modeling and modified MRAC of drying process in paper industry. TAGA Journal, 2018, 14: 2585?2599
                      [31] Murugesan R, Solaimalai J, Chandran K. Computer-aided controller design for a nonlinear process using a Lagrangian-based state transition algorithm. Circuits, Systems, and Signal Processing, 2020, 39(2): 977?996 doi: 10.1007/s00034-019-01139-5
                      [32] Zhang F X, Yang C H, Zhou X J, Gui W H. Fractional-order PID controller tuning using continuous state transition algorithm. Neural Computing and Applications, 2018, 29(10): 795?804 doi: 10.1007/s00521-016-2605-0
                      [33] Zhang F X, Yang C H, Zhou X J, Zhu H Q. Fractional order fuzzy PID optimal control in copper removal process of zinc hydrometallurgy. Hydrometallurgy, 2018, 178: 60?76 doi: 10.1016/j.hydromet.2018.03.021
                      [34] Saravanakumar G, Valarmathi K, Rajasekaran M P, Seshadhri S, Kadhar K M A. State Transition Algorithm (STA) based tuning of integer and fractional-order PID controller for benchmark system. In: Proceedings of the 2015 IEEE International Conference on Computational Intelligence and Computing Research. Madurai, India: IEEE, 2015. 1?5
                      [35] Saravanakumar G, Valarmathi K, Rajasekaran M P, Srinivasan S, Iruthayarajan M W, Balas V E. Tuning of multivariable decentralized PID controller using state transition algorithm. Studies in Informatics and Control, 2015, 24(4): 367?378
                      [36] Saravanakumar G, Valarmathi K, Iruthayarajan M W, Srinivasan S. Lagrangian-based state transition algorithm for tuning multivariable decentralised controller. International Journal of Advanced Intelligence Paradigms, 2016, 8(3): 303?317 doi: 10.1504/IJAIP.2016.077497
                      [37] Zhang F X, Yang C H, Zhou X J, Gui W H. Optimal setting and control strategy for industrial process based on discrete-time fractional-order PIλDμ. IEEE Access, 2019, 7: 47747?47761 doi: 10.1109/ACCESS.2019.2909816
                      [38] 陽春華, 韓潔, 周曉君, 張潤東, 桂衛華. 有色冶金過程不確定優化方法探討. 控制與決策, 2018, 33(5): 856?865

                      Yang Chun-Hua, Han Jie, Zhou Xiao-Jun, Zhang Run-Dong, Gui Wei-Hua. Discussion on uncertain optimization methods for nonferrous metallurgical processes. Control and Decision, 2018, 33(5): 856?865
                      [39] Han J, Yang C H, Zhou X J, Gui W H. Dynamic multi-objective optimization arising in iron precipitation of zinc hydrometallurgy. Hydrometallurgy, 2017, 173: 134?148 doi: 10.1016/j.hydromet.2017.08.007
                      [40] 謝世文, 謝永芳, 李勇剛, 陽春華, 桂衛華. 濕法煉鋅沉鐵過程氧化速率優化控制. 自動化學報, 2015, 41(12): 2036?2046

                      Xie Shi-Wen, Xie Yong-Fang, Li Yong-Gang, Yang Chun-Hua, Gui Wei-Hua. Optimal control of oxidizing rate for iron precipitation process in zinc hydrometallurgy. Acta Automatica Sinica, 2015, 41(12): 2036?2046
                      [41] 張鳳雪, 陽春華, 周曉君, 桂衛華. 基于控制周期計算的鋅液凈化除銅過程優化控制. 控制理論與應用, 2017, 34(10): 1388?1395 doi: 10.7641/CTA.2017.60621

                      Zhang Feng-Xue, Yang Chun-Hua, Zhou Xiao-Jun, Gui Wei-Hua. Optimal control based on control period calculation for copper removal process of zinc solution purification. Control Theory & Applications, 2017, 34(10): 1388?1395 doi: 10.7641/CTA.2017.60621
                      [42] Wang G W, Yang C H, Zhu H Q, Li Y G, Peng X W, Gui W H. State-transition-algorithm-based resolution for overlapping linear sweep voltammetric peaks with high signal ratio. Chemometrics and Intelligent Laboratory Systems, 2016, 151: 61?70 doi: 10.1016/j.chemolab.2015.12.008
                      [43] Huang M, Zhou X J, Yang C H, Gui W H. Dynamic optimization using control vector parameterization with state transition algorithm. In: Proceedings of the 36th Chinese Control Conference. Dalian, China: IEEE, 2017. 4407?4412
                      [44] Yue W C, Gui W H, Chen X F, Zeng Z H, Xie Y F. Knowledge representation and reasoning using self-learning interval type-2 fuzzy Petri nets and extended TOPSIS. International Journal of Machine Learning and Cybernetics, 2019, 10(12): 3499?3520 doi: 10.1007/s13042-019-00940-7
                      [45] 左健, 謝永芳, 王曉麗, 王峰, 陽春華. 基于分析的氧化鋁多效蒸發過程液位優化設定方法. 化工學報, 2017, 68(3): 1005?1013

                      Zuo Jian, Xie Yong-Fang, Wang Xiao-Li, Wang Feng, Yang Chun-Hua. Liquid level optimal-setting for alumina multi-effect evaporation process based on exergy analysis. CIESC Journal, 2017, 68(3): 1005?1013
                      [46] Yang C H, Deng S J, Li Y G, Zhu H Q, Li F B. Optimal control for zinc electrowinning process with current switching. IEEE Access, 2017, 5: 24688?24697 doi: 10.1109/ACCESS.2017.2768068
                      [47] 王雅琳, 黃凱華, 黃天紅, 周曉君, 陽春華. 基于改進小波神經網絡的極譜法多金屬離子濃度檢測信號的在線解析. 中南大學學報(自然科學版), 2016, 47(1): 100?107 doi: 10.11817/j.issn.1672-7207.2016.01.015

                      Wang Ya-Lin, Huang Kai-Hua, Huang Tian-Hong, Zhou Xiao-Jun, Yang Chun-Hua. Online analysis on polarographic detection signal of multi-metal ion concentrations based on improved wavelet neural networks. Journal of Central South University (Science and Technology), 2016, 47(1): 100?107 doi: 10.11817/j.issn.1672-7207.2016.01.015
                      [48] Chen X F, Qian Y C, Wang Y L. Power consumption prediction for dynamic adjustment in hydrocracking process based on state transition algorithm and support vector machine. In: Proceedings of the 24th International Conference on Neural Information Processing. Guangzhou, China: Springer, 2017. 85?94
                      [49] Wang Q A, Huang M, Zhou X J. Feature selection in froth flotation for production condition recognition. IFAC-PapersOnLine, 2018, 51(21): 123?128 doi: 10.1016/j.ifacol.2018.09.403
                      [50] Huang Z K, Yang C H, Zhou X J, Yang S X. Energy consumption forecasting for the nonferrous metallurgy industry using hybrid support vector regression with an adaptive state transition algorithm. Cognitive Computation, 2020, 12(2): 357?368 doi: 10.1007/s12559-019-09644-0
                      [51] Huang Z K, Yang C H, Zhou X J, Huang T W. A hybrid feature selection method based on binary state transition algorithm and ReliefF. IEEE Journal of Biomedical and Health Informatics, 2019, 23(5): 1888?1898 doi: 10.1109/JBHI.2018.2872811
                      [52] Zhou X J, Yang K, Xie Y F, Yang C H, Huang T W. A novel modularity-based discrete state transition algorithm for community detection in networks. Neurocomputing, 2019, 334: 89?99 doi: 10.1016/j.neucom.2019.01.009
                      [53] Zhang H L, Wang C, Fan W H. A new filter collaborative state transition algorithm for two-objective dynamic reactive power optimization. Tsinghua Science and Technology, 2019, 24(1): 30?43 doi: 10.26599/TST.2018.9010068
                      [54] Zhou X J, Gao D Y, Simpson A R. Optimal design of water distribution networks by a discrete state transition algorithm. Engineering Optimization, 2016, 48(4): 603?628 doi: 10.1080/0305215X.2015.1025775
                      [55] Mala-Jetmarova H, Sultanova N, Savic D. Lost in optimisation of water distribution systems? A literature review of system operation. Environmental Modelling & Software, 2017, 93: 209?254
                      [56] Huang Z K, Yang C H, Zhou X J, Gui W H. A novel cognitively inspired state transition algorithm for solving the linear bi-level programming problem. Cognitive Computation, 2018, 10(5): 816?826 doi: 10.1007/s12559-018-9561-1
                      [57] Pan D, Jiang Z H, Chen Z P, Gui W H, Xie Y F, Yang C H. A novel method for compensating temperature measurement error caused by dust using infrared thermal imager. IEEE Sensors Journal, 2018, 19(5): 1730?1739
                      [58] Xie S, Yang C H, Wang X L, Xie Y F. Data reconciliation strategy with time registration for the evaporation process in alumina production. The Canadian Journal of Chemical Engineering, 2018, 96(1): 189?204 doi: 10.1002/cjce.22893
                      [59] Xie S, Yang C H, Yuan X F, Wang X L, Xie Y F. Layered online data reconciliation strategy with multiple modes for industrial processes. Control Engineering Practice, 2018, 77: 63?72 doi: 10.1016/j.conengprac.2018.05.002
                      [60] Yang C H, Xie S, Yuan X F, Wang X L, Xie Y F. A new data reconciliation strategy based on mutual information for industrial processes. Industrial & Engineering Chemistry Research, 2018, 57(38): 12861?12870
                      [61] Xie S, Yang C H, Yuan X F, Wang X L, Xie Y F. A novel robust data reconciliation method for industrial processes. Control Engineering Practice, 2019, 83: 203?212 doi: 10.1016/j.conengprac.2018.11.006
                      [62] 吳佳, 謝永芳, 陽春華, 桂衛華. 數據驅動的銻粗選泡沫圖像特征優化設定. 控制與決策, 2016, 31(7): 1206?1212

                      Wu Jia, Xie Yong-Fang, Yang Chun-Hua, Gui Wei-Hua. Data-driven optimal setting for froth image features of stibium rougher flotation. Control and Decision, 2016, 31(7): 1206?1212
                      [63] Wang Q M, Guo X Y, Wang S S, Liao L L, Tian Q H. Multiphase equilibrium modeling of oxygen bottom-blown copper smelting process. Transactions of Nonferrous Metals Society of China, 2017, 27(11): 2503?2511 doi: 10.1016/S1003-6326(17)60277-2
                      [64] Zhu Q, Shen L, He J J, Gui W H. Temperature prediction of aluminum alloy work-pieces in aging furnaces based on improved case-based reasoning. International Journal of Nonferrous Metallurgy, 2017, 6(4): 47?59 doi: 10.4236/ijnm.2017.64004
                      [65] Huang Z K, Yang C H, Chen X F, Zeng Z H. An adaptive time series representation method for anode current signals in aluminium electrolysis. IFAC-PapersOnLine, 2018, 51(21): 213?218 doi: 10.1016/j.ifacol.2018.09.420
                      [66] Gui W H, Yang C H, Chen X F, Wang Y L. Modeling and optimization problems and challenges arising in nonferrous metallurgical processes. Acta Automatica Sinica, 2013, 39(3): 197?207 doi: 10.1016/S1874-1029(13)60022-1
                      [67] Han J, Zhou X J, Yang C H, Gui W H. A multi-threshold image segmentation approach using state transition algorithm. In: Proceedings of the 34th Chinese Control Conference. Hangzhou, China: IEEE, 2015. 2662?2666
                      [68] Han J, Yang C H, Zhou X J, Gui W H. A new multi-threshold image segmentation approach using state transition algorithm. Applied Mathematical Modelling, 2017, 44: 588?601 doi: 10.1016/j.apm.2017.02.015
                      [69] Huang Z K, Yang C H, Chen X F, Huang K K, Xie Y F. Adaptive over-sampling method for classification with application to imbalanced datasets in aluminum electrolysis. Neural Computing and Applications, 2020, 32(11): 7183?7199 doi: 10.1007/s00521-019-04208-7
                      [70] Zhao T T, Tang J T, Hu S G, Lu G Y, Zhou X J, Zhong Y Y. State-Transition-Algorithm-based underwater multiple objects localization with gravitational field and its gradient tensor. IEEE Geoscience and Remote Sensing Letters, 2020, 17(2): 192?196 doi: 10.1109/LGRS.2019.2917784
                      [71] 劉亞東, 牛大鵬, 常玉清, 王福利, 張永京. 基于區間數的黃金濕法冶煉過程建模與優化研究. 自動化學報, 2019, 45(5): 927?940

                      Liu Ya-Dong, Niu Da-Peng, Chang Yu-Qing, Wang Fu-Li, Zhang Yong-Jing. Study on process modelling and optimizing based on interval number for gold hydrometallurgy. Acta Automatica Sinica, 2019, 45(5): 927?940
                      [72] 高開來, 丁進良. 蒸餾與換熱協同的約束多目標在線操作優化方法. 自動化學報, 2019, 45(9): 1679?1690

                      Gao Kai-Lai, Ding Jin-Liang. A constrained multi-objective online operation optimization method of collaborative distillation and heat exchanger network. Acta Automatica Sinica, 2019, 45(9): 1679?1690
                      [73] 代偉, 陸文捷, 付俊, 馬小平. 工業過程多速率分層運行優化控制. 自動化學報, 2019, 45(10): 1946?1959

                      Dai Wei, Lu Wen-Jie, Fu Jun, Ma Xiao-Ping. Multi-rate layered optimal operational control of industrial processes. Acta Automatica Sinica, 2019, 45(10): 1946?1959
                    • 加載中
                    圖(8)
                    計量
                    • 文章訪問數:  3979
                    • HTML全文瀏覽量:  4941
                    • PDF下載量:  692
                    • 被引次數: 0
                    出版歷程
                    • 收稿日期:  2019-09-03
                    • 錄用日期:  2019-12-15
                    • 網絡出版日期:  2020-01-17
                    • 刊出日期:  2020-11-24

                    目錄

                      /

                      返回文章
                      返回