2.793

                    2018影響因子

                    (CJCR)

                    • 中文核心
                    • EI
                    • 中國科技核心
                    • Scopus
                    • CSCD
                    • 英國科學文摘

                    留言板

                    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

                    姓名
                    郵箱
                    手機號碼
                    標題
                    留言內容
                    驗證碼

                    基于分布式策略的直流微電網下垂控制器設計

                    盧自寶 鐘尚鵬 郭戈

                    盧自寶, 鐘尚鵬, 郭戈. 基于分布式策略的直流微電網下垂控制器設計. 自動化學報, 2019, 45(x): 1?12 doi: 10.16383/j.aas.c190628
                    引用本文: 盧自寶, 鐘尚鵬, 郭戈. 基于分布式策略的直流微電網下垂控制器設計. 自動化學報, 2019, 45(x): 1?12 doi: 10.16383/j.aas.c190628
                    Lu Zi-Bao, Zhong Shang-Peng, Guo Ge. Design of droop controller for dc microgrid based on distributed strategy. Acta Automatica Sinica, 2019, 45(x): 1?12 doi: 10.16383/j.aas.c190628
                    Citation: Lu Zi-Bao, Zhong Shang-Peng, Guo Ge. Design of droop controller for dc microgrid based on distributed strategy. Acta Automatica Sinica, 2019, 45(x): 1?12 doi: 10.16383/j.aas.c190628

                    基于分布式策略的直流微電網下垂控制器設計

                    doi: 10.16383/j.aas.c190628
                    基金項目: 國家自然科學基金(61503003, U1808205)的資助
                    詳細信息
                      作者簡介:

                      盧自寶:安徽師范大學物理與電子信息學院副教授. 2013年獲得大連海事大學博士學位. 主要研究方向為網絡控制系統與微電網控制. E-mail: luzibao@163.com

                      鐘尚鵬:安徽師范大學物理與電子信息學院研究生. 主要研究方向為微電網分布式控制, 網絡控制系統. E-mail: zhongshangpeng@163.com

                      郭戈:東北大學教授. 1998年獲得東北大學博士學位. 主要研究方向為智能交通系統, 運動目標檢測跟蹤網絡. E-mail: geguo@yeah.net

                    Design of Droop Controller for DC Microgrid Based on Distributed Strategy

                    Funds: Supported in by the National Natural Science Foundation of China(61503003, U1808205)
                    • 摘要: 本文研究了分布式控制策略下直流微電網的負荷分配和電壓平衡問題. 給出一種新的基于分布式策略的下垂控制器設計方法, 能夠在統一的框架下實現直流微電網負載共享和電壓平衡. 首先將直流微電網的負載共享和電壓平衡問題轉化為多目標優化問題, 其性能指標與微源的容量密切相關. 然后, 通過求解多目標優化問題獲得實現負載共享和電壓平衡的集中式控制策略, 并給出下垂控制器的設計方法. 為了降低系統的通信負擔, 給出一種新的只需與鄰居節點交換信息的分布式控制策略, 通過理論分析可知該分布式控制策略能夠收斂到多目標優化問題的最優解. 最后, 通過對新能源汽車充換電站系統的仿真驗證了本文提出的方法的有效性.
                    • 圖  1  用戶級直流微電網的典型結構

                      Fig.  1  Typical structure of user-level dc microgrid

                      圖  3  用戶級微電網i的等效電路模型

                      Fig.  3  Equivalent circuit model of user-level microgrid i

                      圖  2  系統級直流微電網的典型結構

                      Fig.  2  Typical structure of system-level dc microgrid

                      圖  4  系統級微電網的等效電路模型

                      Fig.  4  Equivalent circuit model of system-level microgrid

                      圖  5  新能源汽車充換電站

                      Fig.  5  New energy vehicle charging and changing station

                      圖  6  改進的直流微電網充換電站

                      Fig.  6  An improved dc microgrid changing and changing station

                      圖  7  基于分布式方案的$k, V, I_s $的演化曲線$a = 0.5$

                      Fig.  7  When $a = 0.5$, the evolution curve of $k, V, I_s $ based on the distributed scheme

                      圖  8  $a = 0.1, 0.5, 0.9$$k, V, I_s/m$的演化曲線

                      Fig.  8  When $a = 0.1, 0.5, 0.9$, the evolution curve of $k, V, I_s/m$

                      圖  9  負載變化對$k, V, I_s $的影響$a = 0.5$

                      Fig.  9  When $a = 0.5$, effect of load change on $k, V, I_s $

                      圖  10  節點7接入和退出對$k, V, I_s $的影響$a = 0.5$

                      Fig.  10  When $a = 0.5$, influence of node 7 access and exit on $k, V, I_s $

                      360彩票
                    • [1] 1 Dong J, Feng T, Sun H X, Cai H X, Li R, Yang Y. Clean distributed generation in China: policy options and international experience. Renewable and Sustainable Energy Reviews, 2016, 57: 753?764 doi: 10.1016/j.rser.2015.12.171
                      [2] 王盼寶, 王衛, 孟尼娜, 吳炎. 直流微電網離網與并網運行統一控制策略. 中國電機工程學報, 2015, 35(17): 4388?4396

                      2 Wang Pan-Bao, Wang Wei, Meng Ni-N. Unified control strategy of island and drid-connected operations for dc microgrid. Proceedings of the CSEE, 2015, 35(17): 4388?4396
                      [3] 吳衛民, 何遠彬, 耿攀, 錢照明, 汪槱生. 直流微網研究中的關鍵技術. 電工技術學報, 2012, 27(1): 98?113

                      3 Wu Wei-Min, He Yuan-Bin, Geng Ban, Qian Zhao-Ming, Wang You-Sheng. Key technolog-ies for dc microgrids. Transaction of China Electrotechnical Society, 2012, 27(1): 98?113
                      [4] 4 De Persis C, Monshizadeh N. Bregman storage functions for microgrid control. IEEE Transations Automatic Control, 2018, 63(1): 53?68 doi: 10.1109/TAC.2017.2709246
                      [5] 5 Ding L, Han Q, Wang L Y, Sindi E. Distributed cooperative optimal control of dc microgrids with communication delays. IEEE Transactions on Industrial Informatics, 2018, 14(9): 3924?3935 doi: 10.1109/TII.2018.2799239
                      [6] 6 Zhao J, D?rfler F. Distributed control and optimization in DC microgrids. Automatica, 2015, 61: 18?26 doi: 10.1016/j.automatica.2015.07.015
                      [7] 7 Augustine S, Mishra M K, Lakshminarasamma N. Adaptive droop control strategy for load sharing and circulating current minimization in low-voltage standalone DC microgrid. IEEE Transactions on Sustainable Energy, 2015, 6(1): 132?141 doi: 10.1109/TSTE.2014.2360628
                      [8] 8 Tah A, Das D. An enhanced droop control method for accurate load sharing and voltage improvement of isolated and interconnected dc microgrids. IEEE Transactions on Sustainable Energy, 2016, 7(3): 1194?1204 doi: 10.1109/TSTE.2016.2535264
                      [9] 9 Trip S, Cucuzzella M, Cheng X D, Scherpen J. Distributed averaging control for voltage regulation and current sharing in dc microgrids: Modeling and Experimental Validation. IEEE Control Systems Letters, 2019, 3(1): 174?179 doi: 10.1109/LCSYS.2018.2857559
                      [10] 10 Tucci M, Riverso S, Vasquez J C, GuerreroJ M, Ferrari-Trecate G. A decentralized scalable approach to voltage control of dc islanded microgrids. IEEE Transactions on Control Systems Technology, 2015, 24(6): 1965?1979
                      [11] 11 Byeon G, Yoon T, Oh S, Jang G. Energy managem-ent strategy of the DC distribution system in buildings using the EV service Model. IEEE transactions on power Electronics, 2013, 28(4): 1544?1554 doi: 10.1109/TPEL.2012.2210911
                      [12] 12 Guerrero J M, Vasquez J C, Matas J, Vicuna L G de, Castilla M. Hierarchical control of droop-controlled ac and dc microgrids—A general approach toward standardization. IEEE Transations on Industrial Electronics, 2011, 58(1): 158?172 doi: 10.1109/TIE.2010.2066534
                      [13] 13 Dragicevic, Tomislav, Guerrero J, Vasquez, Juan C, skrlec, Davor. Supervisory control of an adaptive-droop regulated dc microgrid with battery management capability. IEEE Transaction on Power Electronics, 2014, 29(6): 695?706
                      [14] Jyothish M R, Jasmin E A. Load sharing control and circulating current minimization of parallel dc-dc converters based on droop index. In: Proceedings of 2018 International CET Conference on Control Communication and Computing, Thiruvananthapura, 2018, 84−88
                      [15] 15 Nasirian V, Davoudi A, Lewis F L, Guerrero J M. Distributed adaptive droop control for DC distribution systems. IEEE Transactions on Energy Conversion, 2014, 29(4): 944?956 doi: 10.1109/TEC.2014.2350458
                      [16] 16 Lu X, Guerrero J M, Sun K, Vasquez J C. An improved droop control method for dc microgrids based on low bandwidth communication with dc bus voltage restoration and enhanced current sharing accuracy. IEEE Transactions on Power Electronics, 2014, 29(4): 1800?1812 doi: 10.1109/TPEL.2013.2266419
                      [17] 17 Wang P B, Lu X, Yang X, Wang W, Xu D G. An improved distributed secondary control method for dc microgrids with enhanced dynamic current sharing performance. IEEE Transactions on Power Electronics, 2016, 31(9): 6658?6673 doi: 10.1109/TPEL.2015.2499310
                      [18] 18 Ingle A A, shyan A B, sahoo S R, Anand S. Quality index based distributed secondary controller for low voltage dc microgrid. IEEE Transactions on Industrial Electronics, 2018, 65(9): 7004?7014 doi: 10.1109/TIE.2018.2795524
                      [19] 19 Cucuzzella M, Trip S, De Persis C, Cheng X, Ferrara A, Arjan V D S. A robust consensus algorithm for current sharing and voltage regulation in dc microgrids. IEEE Transactions on Control Systems Technology, 2019, 27(4): 1583?1595 doi: 10.1109/TCST.2018.2834878
                      [20] 20 Gu Y, Xiang X, Li W, He X. Mode-adaptive decentralized control for renewable dc microgrid with enhanced reliability and flexibility. IEEE Transactions on Power Electronics, 2014, 29(9): 5072?5080 doi: 10.1109/TPEL.2013.2294204
                      [21] 21 Zhang D, Jiang J C, Wang L Y, Zhang W G. Robust and scalable management of power networks in dual-source trolleybus systems: A consensus control framework. IEEE Transaction on Intelligent Transportation System, 2016, 17(4): 1029?1038 doi: 10.1109/TITS.2015.2492564
                    • 加載中
                    計量
                    • 文章訪問數:  2083
                    • HTML全文瀏覽量:  2830
                    • 被引次數: 0
                    出版歷程
                    • 收稿日期:  2019-09-04
                    • 錄用日期:  2019-11-25
                    • 網絡出版日期:  2019-12-24

                    目錄

                      /

                      返回文章
                      返回