2.793

                    2018影響因子

                    (CJCR)

                    • 中文核心
                    • EI
                    • 中國科技核心
                    • Scopus
                    • CSCD
                    • 英國科學文摘

                    留言板

                    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

                    姓名
                    郵箱
                    手機號碼
                    標題
                    留言內容
                    驗證碼

                    基于局部 ? 整體相關特征的多單元化工過程分層監測

                    姜慶超 顏學峰

                    姜慶超, 顏學峰. 基于局部 ? 整體相關特征的多單元化工過程分層監測. 自動化學報, 2020, 46(9): 1770?1782 doi: 10.16383/j.aas.c190671
                    引用本文: 姜慶超, 顏學峰. 基于局部 ? 整體相關特征的多單元化工過程分層監測. 自動化學報, 2020, 46(9): 1770?1782 doi: 10.16383/j.aas.c190671
                    Jiang Qing-Chao, Yan Xue-Feng. Hierarchical monitoring for multi-unit chemical processes based on local-global correlation features. Acta Automatica Sinica, 2020, 46(9): 1770?1782 doi: 10.16383/j.aas.c190671
                    Citation: Jiang Qing-Chao, Yan Xue-Feng. Hierarchical monitoring for multi-unit chemical processes based on local-global correlation features. Acta Automatica Sinica, 2020, 46(9): 1770?1782 doi: 10.16383/j.aas.c190671

                    基于局部 ? 整體相關特征的多單元化工過程分層監測

                    doi: 10.16383/j.aas.c190671
                    基金項目: 國家自然科學基金(61973119, 61603138, 21878081)資助
                    詳細信息
                      作者簡介:

                      姜慶超:華東理工大學自動化系副研究員. 2010年和2015年分別獲得華東理工大學學士和博士學位, 之后分別于阿爾伯塔大學、杜伊斯堡-艾森大學、中國香港科技大學、以及京都大學從事研究工作. 主要研究方向為機器學習與工業應用, 工業大數據解析, 過程監測與故障診斷. E-mail: qchjiang@ecust.edu.cn

                      顏學峰:華東理工大學自動化系教授. 1995年和2002年分別獲得浙江大學學士和博士學位. 主要研究方向為復雜化工過程建模、優化與控制, 過程監測與故障診斷, 智能信息處理. 本文通信作者E-mail: xfyan@ecust.edu.cn

                    Hierarchical Monitoring for Multi-unit Chemical Processes Based on Local-global Correlation Features

                    Funds: Supported by National Natural Science Foundation of China (61973119, 61603138, 21878081)
                    • 摘要: 針對一類多單元化工過程的監測問題, 提出基于局部?整體相關特征的分層故障檢測與故障定位方法, 通過表征單元內部變量相關性、單元與單元間相關性、局部單元與過程整體相關性, 對過程運行狀態進行判斷, 以提升過程監測的準確性與可靠性. 首先, 采用典型相關分析, 通過引入鄰域單元相關變量提取每個單元的獨有特征和外部相關特征; 其次, 對每個單元的獨有特征和所有單元的外部相關特征建立統計模型實現分層故障檢測; 然后, 建立單元?變量分層貢獻圖, 對故障單元以及故障變量實現分層定位. 通過在Tennessee Eastman仿真過程和一個實驗室級甘油精餾過程中的應用說明所提分層監測方法的有效性.
                    • 圖  1  基于局部?整體相關特征的分層監測設計框架

                      Fig.  1  Framework of the local-global correlation feature-based hierarchical monitoring

                      圖  2  TE過程流程圖[41]

                      Fig.  2  Flowchart of the TE process[41]

                      圖  3  TE過程故障4的監測效果 ((a)經典CCA監測結果; (b)分層監測整體監測結果; (c)分層監測局部監測效果)

                      Fig.  3  Monitoring results for the TE fault 4 ((a) Conventional CCA method; (b) Global monitoring using hierarchical method; (c) Local monitoring using hierarchical method)

                      圖  4  TE過程故障4的分層貢獻圖((a)$T_{b,{\rm out}}^2$; (b)$T_{b,{\rm in}}^2$; (c)${Q_b}$)

                      Fig.  4  Contribution plots for the TE fault 4 ((a)$T_{b,{\rm out}}^2$; (b)$T_{b,{\rm in}}^2$; (c)${Q_b}$)

                      圖  5  TE過程故障5的監測效果 ((a)經典CCA監測結果; (b)分層監測整體監測結果; (c)分層監測局部監測效果)

                      Fig.  5  Fault detection results for the TE fault 5 ((a) Conventional CCA method; (b) Global monitoring using hierarchical method; (c) Local monitoring using hierarchical method)

                      圖  6  TE過程故障5的分層監測貢獻圖 ((a)$T_z^2$${Q_z}$; (b)$T_{b,{\rm out}}^2$; (c)$T_{b,{\rm in}}^2$; (d)${Q_b}$; (e)控制補償后$T_{b,{\rm out}}^2$)

                      Fig.  6  Contribution plots for the TE fault 5 ((a)$T_z^2$ and ${Q_z}$; (b)$T_{b,{\rm out}}^2$; (c)$T_{b,{\rm in}}^2$; (d)${Q_b}$; (e)$T_{b,{\rm out}}^2$ after compensation)

                      圖  7  實驗室甘油精餾裝置與流程圖((a)設備圖; (b)流程圖)

                      Fig.  7  Lab-scale glycerin distillation process ((a) Equipment diagram; (b) Simplified flowchart)

                      圖  8  精餾過程故障1的分層故障檢測效果 ((a)整體監測統計量; (b)局部監測統計量)

                      Fig.  8  Fault detection results for the distillation process fault 1 ((a) Global monitoring statistics; (b) Local monitoring statistics)

                      圖  9  精餾過程故障1分層監測貢獻圖((a)$T_z^2$${Q_z}$; (b)$T_{b,{\rm out}}^2$; (c)$T_{b,{\rm in}}^2$)

                      Fig.  9  Contribution plots for the distillation fault 1 ((a) $T_z^2$ and ${Q_z}$; (b) $T_{b,{\rm out}}^2$; (c) $T_{b,{\rm in}}^2$)

                      圖  10  精餾過程故障2的分層故障檢測效果((a)整體監測統計量; (b)局部監測統計量)

                      Fig.  10  Fault detection results for the distillation process fault 2 ((a) Global monitoring statistics; (b) Local monitoring statistics)

                      圖  11  精餾過程故障2分層監測貢獻圖

                      Fig.  11  Contribution plots for the distillation process fault 2

                      表  1  TE過程的典型操作單元和對應變量

                      Table  1  Operation units and corresponding variables in the TE process

                      單元變量描述變量名稱符號
                      進料A 進料 (流1)XMEAS(1)$\boxed1$
                      D 進料 (流2)XMEAS(2)$\boxed2$
                      E 進料 (流3)XMEAS(3)$\boxed3$
                      A 和 C 進料XMEAS(4)$\boxed4$
                      D 進料XMV(1)
                      A 進料流量XMV(3)
                      E 進料流量XMV(2)
                      A 和 C 進料流量XMV(4)
                      反應器反應器進料量XMEAS(6)$\boxed6$
                      反應器壓力XMEAS(7)$\boxed7$
                      反應器液位XMEAS(8)$\boxed8$
                      反應器溫度XMEAS(9)$\boxed9$
                      反應器水溫XMEAS(21)$\boxed{21}$
                      反應器冷卻水流量XMV(10)
                      冷凝器冷卻水流量XMV(11)
                      分離器分離器溫度XMEAS(11)$\boxed{11}$
                      分離器液位XMEAS(12)$\boxed{12}$
                      分離器壓力XMEAS(13)$\boxed{13}$
                      分離器底物流量XMEAS(14)$\boxed{14}$
                      分離器水溫度XMEAS(22)$\boxed{22}$
                      分離器液流量XMV(7)
                      汽提塔汽提塔液位XMEAS(15)$\boxed{15}$
                      汽提塔壓力XMEAS(16)$\boxed{16}$
                      汽提塔底物流量XMEAS(17)$\boxed{17}$
                      汽提塔溫度XMEAS(18)$\boxed{18}$
                      汽提塔蒸汽流量XMEAS(19)$\boxed{19}$
                      汽提塔產物流量XMV(8)
                      汽提塔蒸汽閥開度XMV(9)
                      壓縮再循環流量XMEAS(5)$\boxed5$
                      排放速度XMEAS(10)$\boxed{10}$
                      壓縮機功率XMEAS(20)$\boxed{20}$
                      壓縮機再循環閥XMV(5)
                      排放閥XMV(6)
                      下載: 導出CSV

                      表  2  分層監測對于21個故障測試集的監測效果

                      Table  2  Hierarchical monitoring results for the 21 faults in TE process

                      編碼單元及過程進料單元反應器單元分離器單元汽提塔單元壓縮單元過程整體
                      故障描述/統計量$T_{1,{\rm out}}^2$$T_{1,{\rm in}}^2$${Q_1}$$T_{2,{\rm out}}^2$$T_{2,{\rm in}}^2$${Q_2}$$T_{3,{\rm out}}^2$$T_{3,{\rm in}}^2$${Q_3}$$T_{4,{\rm out}}^2$$T_{4,{\rm in}}^2$${Q_4}$$T_{5,{\rm out}}^2$$T_{5,{\rm in}}^2$${Q_5}$$T_z^2$${Q_z}$
                      1A/C 進料比率, B 成分不變 (階躍)0.990.310.040.770.260.060.440.040.0710.060.980.170.020.2311
                      2B 成分, A/C 進料比率不變 (階躍)0.920.020.270.950.220.030.920.140.060.990.060.890.990.010.420.980.98
                      3D 的進料溫度 (階躍)0.010.010.010.320.020.000.140.010.000.2000.0100.010.090.010.02
                      4反應器冷卻水入口溫度 (階躍)0.020.010.020.250.7510.120.000.010.2100.0100.000.010.030.06
                      5冷凝器冷卻水入口溫度 (階躍)0.160.030.040.990.090.030.230.010.0210.000.190.070.000.130.220.18
                      6A 進料損失 (階躍)0.990.91110.980.960.980.820.980.990.960.970.990.920.990.990.99
                      7C 存在壓力損失 (階躍)0.9810.870.980.220.090.380.030.040.760.010.220.240.010.2710.98
                      8A、B、C 進料成分 (隨機)0.780.100.160.970.480.130.900.030.350.940.110.680.870.020.610.970.89
                      9D 的進料溫度 (隨機)0.000.010.010.270.020.010.140.010.010.1600.0100.000.020.010.02
                      10C 的進料溫度 (隨機)0.080.020.020.430.040.020.330.010.000.460.000.810.070.000.100.290.13
                      11反應器冷卻水入口溫度 (隨機)0.110.010.010.390.610.700.170.010.010.420.000.0500.010.020.200.27
                      12冷凝器冷卻水入口溫度 (隨機)0.740.220.250.950.600.290.940.280.650.960.060.890.340.030.830.960.91
                      13反應動態 (慢偏移)0.770.190.300.920.720.390.890.100.480.950.240.860.850.030.890.940.95
                      14反應器冷卻水閥門 (粘滯)0.750.010.0010.970.120.360.070.010.880.010.010.040.010.0111
                      15冷凝器冷卻水閥門 (粘滯)0.010.010.010.290.020.010.180.000.010.2300.030.000.000.030.020.06
                      16未知0.030.020.010.370.030.010.260.000.000.4000.850.030.010.050.150.11
                      17未知0.640.020.010.950.940.440.350.040.020.760.000.220.030.010.030.840.85
                      18未知0.880.820.830.920.870.790.910.120.870.900.750.880.800.710.850.880.88
                      19未知0.010.020.010.240.080.010.140.010.010.1600.120.010.320.660.010.03
                      20未知0.030.020.010.610.020.010.380.050.390.810.000.230.470.010.890.320.43
                      21流 4 的閥門固定在穩態位置0.010.000.000.660.440.010.870.000.010.730.000.450.310.000.020.410.84
                      下載: 導出CSV

                      表  3  甘油精餾過程中的監測變量

                      Table  3  Measured variables in the distillation process

                      單元 1變量名稱單元 2變量名稱
                      1進料流量1進料儲罐液位
                      2靈敏板溫度2~13塔板溫度1~12
                      3塔底液位14冷卻水流量
                      4塔頂回流15重相儲灌液位
                      5塔頂產品流16輕相儲罐液位
                      下載: 導出CSV
                      360彩票
                    • [1] 柴天佑, 丁進良. 流程工業智能優化制造. 中國工程科學, 2018, 20(4): 51?58

                      Chai Tian-You, Ding Jin-Liang. Smart and optimal manufacturing for process industry. Strategic Study of CAE, 2018, 20(4): 51?58
                      [2] 劉強, 卓潔, 郎自強, 秦泗釗. 數據驅動的工業過程運行監控與自優化研究展望. 自動化學報, 2018, 44(11): 1944?1956

                      Liu Qiang, Zhuo Jie, Lang Zi-Qiang, Qin S Joe. Perspectives on data-driven operation monitoring and self-optimization of industrial processes. Acta Automatica Sinica, 2018, 44(11): 1944?1956
                      [3] 錢鋒, 杜文莉, 鐘偉民, 唐漾. 石油和化工行業智能優化制造若干問題及挑戰. 自動化學報, 2017, 43(6): 893?901

                      Qian Feng, Du Wen-Li, Zhong Wei-Min, Tang Yang. Problems and challenges of smart optimization manufacturing in petrochemical industries. Acta Automatica Sinica, 2017, 43(6): 893?901
                      [4] Qin S J. Process data analytics in the era of big data. AIChE Journal, 2014, 60(9): 3092?3100 doi: 10.1002/aic.14523
                      [5] 趙春暉, 余萬科, 高福榮. 非平穩間歇過程數據解析與狀態監控—回顧與展望, 自動化學報, 2020, DOI: 10.16383/j.aas.c190586

                      Zhao Chun-Hui, Yu Wan-Ke, Gao Fu-Rong. Data analytics and condition monitoring methods for nonstationary batch processes—current status and future, Acta Automatica Sinica, 2020, DOI: 10.16383/j.aas.c190586
                      [6] Wang Y Q, Si Y B, Huang B, and Lou Z J. Survey on the theoretical research and engineering applications of multivariate statistics process monitoring algorithms: 2008–2017. The Canadian Journal of Chemical Engineering, 2018, 96(10): 2073?2085 doi: 10.1002/cjce.23249
                      [7] Ge Z Q. Review on data-driven modeling and monitoring for plant-wide industrial processes. Chemometrics and Intelligent Laboratory Systems, 2017, 171: 16?25
                      [8] Jiang Q C, Yan X F, Huang B. Review and perspectives of data-driven distributed monitoring for industrial plant-wide processes. Industrial and Engineering Chemistry Research, 2019, 58(29): 12899?12912
                      [9] 郭小萍, 劉詩洋, 李元. 基于稀疏殘差距離的多工況過程故障檢測方法研究. 自動化學報, 2019, 45(3): 617?625

                      Guo Xiao-Ping, Liu Shi-Yang, Li Yuan. Fault detection of multi-mode processes employing sparse residual distance. Acta Automatica Sinica, 2019, 45(3): 617?625
                      [10] Ding S X, Data-driven Design of Fault Diagnosis and Fault-tolerant Control Systems: Springer London, 2014.
                      [11] Zhang Y W, Zhou H, Qin S J. Decentralized fault diagnosis of large-scale processes using multiblock kernel principal component analysis. Acta Automatica Sinica, 2010, 36(4): 593?597
                      [12] Zhao C H, Sun H. Dynamic distributed monitoring strategy for large-scale nonstationary processes subject to frequently varying conditions under closed-loop control. IEEE Transactions on Industrial Electronics, 2019, 66(6): 4749?4758 doi: 10.1109/TIE.2018.2864703
                      [13] Shang C, Ji H Q, Huang X L, Yang F, Huang D X. Generalized grouped contributions for hierarchical fault diagnosis with group Lasso. Control Engineering Practice, 2019, 93: 104193 doi: 10.1016/j.conengprac.2019.104193
                      [14] 鄒筱瑜, 王福利, 常玉清, 王敏, 蔡慶宏. 基于分層分塊結構的流程工業過程運行狀態評價及非優原因追溯. 自動化學報, 2019, 45(2): 315?324

                      Zou Xiao-Yu, Wang Fu-Li, Chang Yu-Qing, Wang Min, Cai Qing-Hong. Plant-wide process operating performance assessment and non-optimal cause identication based on hierarchical multi-block structure. Acta Automatica Sinica, 2019, 45(2): 315?324
                      [15] Jiang Q C, Huang B. Distributed monitoring for large-scale processes based on multivariate statistical analysis and Bayesian method. Journal of Process Control, 2016, 46: 75?83 doi: 10.1016/j.jprocont.2016.08.006
                      [16] 羅娜, 蔣勇, 葉貞成, 杜文莉, 錢鋒. 基于集成建模方法的乙二醇全流程模擬. 化工學報, 2009, 60(1): 151?156 doi: 10.3321/j.issn:0438-1157.2009.01.022

                      Luo Na, Jiang Yong, Ye Zhen-Cheng, Du Wen-Li, Qian Feng. Simulation of ethylene glycol process based on integrated modeling method. Chinese Journal of Chemical Engineering, 2009, 60(1): 151?156 doi: 10.3321/j.issn:0438-1157.2009.01.022
                      [17] 文成林, 呂菲亞, 包哲靜, 劉妹琴. 基于數據驅動的微小故障診斷方法綜述. 自動化學報, 2016, 42(9): 1285?1299

                      Wen Cheng-Lin, Lv Fei-Ya, Bao Zhe-Jing, Liu Mei-Qin. A review of data driven-based incipient fault diagnosis. Acta Automatica Sinica, 2016, 42(9): 1285?1299
                      [18] 楊浩, 姜斌, 周東華. 互聯系統容錯控制的研究回顧與展望. 自動化學報, 2017, 43(1): 9?19

                      Yang Hao, Jiang Bin, Zhou Dong-Hua. Review and perspectives on fault tolerant control for interconnected systems. Acta Automatica Sinica, 2017, 43(1): 9?19
                      [19] Chen Z W, Ding S X, Zhang K, Li Z B, Hu Z K. Canonical correlation analysis-based fault detection methods with application to alumina evaporation process. Control Engineering Practice, 2016, 46: 51?58 doi: 10.1016/j.conengprac.2015.10.006
                      [20] 曹玉蘋, 黃琳哲, 田學民. 一種基于 DIOCVA 的過程監控方法. 自動化學報, 2015, 41(12): 2072?2080

                      Cao Yu-Ping, Huang Lin-Zhe, Tian Xue-Min. A process monitoring method using dynamic input-output canonical variate analysis. Acta Automatica Sinica, 2015, 41(12): 2072?2080
                      [21] Shi L K, Tong C D, Lan T, Shi X H. Statistical process monitoring based on ensemble structure analysis, IEEE/CAA Journal of Automatica Sinica, 2018, DOI: 10.1109/JAS. 2017.7510877
                      [22] 彭開香, 馬亮, 張凱. 復雜工業過程質量相關的故障檢測與診斷技術綜述. 自動化學報, 2017, 43(3): 349?365

                      Peng Kai-Xiang, Ma Liang, Zhang Kai. Review of quality-related fault detection and diagnosis techniques for complex industrial processes. Acta Automatica Sinica, 2017, 43(3): 349?365
                      [23] Ge Z Q, Song Z H. Distributed PCA model for plant-wide process monitoring. Industrial and Engineering Chemistry Research, 2013, 52(5): 1947?1957
                      [24] Liu Q, Qin S J, Chai T Y. Multiblock concurrent PLS for decentralized monitoring of continuous annealing processes. IEEE Transactions on Industrial Electronics, 2014, 61(61): 6429?6437
                      [25] Qin S J, Valle S, Piovoso M J. On unifying multiblock analysis with application to decentralized process monitoring. Journal of Chemometrics, 2001, 15(9): 715?742 doi: 10.1002/cem.667
                      [26] Ge Z Q. Quality prediction and analysis for large-scale processes based on multi-level principal component modeling strategy. Control Engineering Practice, 2014, 31(1): 9?23
                      [27] Jiang Q C, Ding S X, Wang Y, Yan X F. Data-driven distributed local fault detection for large-scale processes based on the GA-regularized canonical correlation analysis. IEEE Transactions on Industrial Electronics, 2017, 64(10): 8148?8157 doi: 10.1109/TIE.2017.2698422
                      [28] Wang Y, Jiang Q C, Yan X F, Fu J Q. Joint-individual monitoring of large-scale chemical processes with multiple interconnected operation units incorporating multiset CCA. Chemometrics and Intelligent Laboratory Systems, 2017, 166: 14?22
                      [29] Zhu J L, Ge Z Q, Song Z H. Distributed parallel PCA for modeling and monitoring of large-scale plant-wide processes with big data. IEEE Transactions on Industrial Informatics, 2017, 13(4): 1877?1885 doi: 10.1109/TII.2017.2658732
                      [30] Jiang Q C, Yan X F, Huang B. Performance-driven distributed PCA process monitoring based on fault-relevant variable selection and Bayesian inference. IEEE Transactions on Industrial Electronics, 2015, 63(1): 377?386
                      [31] Jiang B B, Huang D X, Zhu X X, Yang F, Richard D Braatz. Canonical variate analysis-based contributions for fault identification. Journal of Process Control, 2015, 26: 17?25 doi: 10.1016/j.jprocont.2014.12.001
                      [32] Westerhuis J A, Gurden S P, Smilde A K. Generalized contribution plots in multivariate statistical process monitoring. Chemometrics and Intelligent Laboratory Systems, 2000, 51(1): 95?114
                      [33] Kerkhof P, Vanlaer J, Gins G, Impe J. Analysis of smearing-out in contribution plot based fault isolation for statistical process control. Chemical Engineering Science, 2013, 104: 285?293 doi: 10.1016/j.ces.2013.08.007
                      [34] Yan Z B, Yao Y. Variable selection method for fault isolation using least absolute shrinkage and selection operator (LASSO). Chemometrics and Intelligent Laboratory Systems, 2015, 146: 136?146
                      [35] Chen Z W, Ding S X, Peng T, Yang C H, Gui W H. Fault detection for non-Gaussian processes ssing generalized canonical correlation analysis and randomized algorithms. IEEE Transactions on Industrial Electronics, 2018, 65(2): 1559?1567 doi: 10.1109/TIE.2017.2733501
                      [36] Jiang Q C, Gao F R, Yi H, Yan X F. Multivariate statistical monitoring of key operation units of batch processes based on time-slice CCA. IEEE Transactions on Control Systems Technology, 2019, 27(3): 1368?1375 doi: 10.1109/TCST.2018.2803071
                      [37] Jiang Q C, Yan X F. Learning deep correlated representations for nonlinear process monitoring. IEEE Transactions on Industrial Informatics, 2019, 15(12): 6200?6209 doi: 10.1109/TII.2018.2886048
                      [38] Jiang Q C, Yan X F. Multimode process monitoring using variational Bayesian inference and canonical correlation analysis. IEEE Transactions on Automation Science and Engineering, 2019, 16(4): 1814?1824 doi: 10.1109/TASE.2019.2897477
                      [39] Yin S, Luo H, Ding S X. Real-time implementation of fault-tolerant control systems with performance optimization. IEEE Transactions on Industrial Electronics, 2014, 61(5): 2402?2411 doi: 10.1109/TIE.2013.2273477
                      [40] Downs J J, Vogel E F. A plant-wide industrial process control problem. Computers and Chemical Engineering, 1993, 17(3): 245?255
                      [41] Chiang L H, Russell E L, Braatz R D, Fault detection and diagnosis in industrial systems: Springer Science and Business Media, London, 2000.
                    • 加載中
                    圖(11) / 表(3)
                    計量
                    • 文章訪問數:  541
                    • HTML全文瀏覽量:  592
                    • PDF下載量:  189
                    • 被引次數: 0
                    出版歷程
                    • 收稿日期:  2019-09-23
                    • 錄用日期:  2020-01-17
                    • 網絡出版日期:  2020-09-28
                    • 刊出日期:  2020-09-28

                    目錄

                      /

                      返回文章
                      返回