2.793

                    2018影響因子

                    (CJCR)

                    • 中文核心
                    • EI
                    • 中國科技核心
                    • Scopus
                    • CSCD
                    • 英國科學文摘

                    留言板

                    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

                    姓名
                    郵箱
                    手機號碼
                    標題
                    留言內容
                    驗證碼

                    基于駐極體材料的機械天線式低頻通信系統仿真研究

                    崔勇 王琛 宋曉 梁博文

                    崔勇, 王琛, 宋曉, 梁博文. 基于駐極體材料的機械天線式低頻通信系統仿真研究. 自動化學報, 2020, 45(x): 1?8 doi: 10.16383/j.aas.c190678
                    引用本文: 崔勇, 王琛, 宋曉, 梁博文. 基于駐極體材料的機械天線式低頻通信系統仿真研究. 自動化學報, 2020, 45(x): 1?8 doi: 10.16383/j.aas.c190678
                    Cui Yong, Wang Chen, Song Xiao, Liang Bo-Wen. Simulation and analysis of mechanical antenna low frequency communication system based on electret material. Acta Automatica Sinica, 2020, 45(x): 1?8 doi: 10.16383/j.aas.c190678
                    Citation: Cui Yong, Wang Chen, Song Xiao, Liang Bo-Wen. Simulation and analysis of mechanical antenna low frequency communication system based on electret material. Acta Automatica Sinica, 2020, 45(x): 1?8 doi: 10.16383/j.aas.c190678

                    基于駐極體材料的機械天線式低頻通信系統仿真研究

                    doi: 10.16383/j.aas.c190678
                    基金項目: “十三五”軍委裝備發展預研領域基金(61405180302, 低頻/甚低頻導航信號發射天線小型化技術)、國家自然科學基金(51707006)、北京市自然科學基金(4192033)
                    詳細信息
                      作者簡介:

                      崔勇:北京航空航天大學自動化與電氣工程學院副教授, 主要研究方向為電磁場和微納傳感.E-mail: cuiyong@buaa.edu.cn

                      王?。罕本┖娇蘸教齑髮W自動化與電氣工程學院碩士研究生, 主要研究方向電磁場測量和仿真建模.E-mail: sy1703208@buaa.edu.cn

                      宋曉:北京航空航天大學自動化學院副教授, 主要研究方向為深度學習、知識圖譜、建模與仿真技術. 本文通訊作者.E-mail: songxiao@buaa.edu.cn

                      梁博文:北京航空航天大學自動化與電氣工程學院本科生, 主要研究方向電磁場和仿真建模.E-mail: liangbowen@buaa.edu.cn

                    • 中圖分類號: TN822+.1

                    Simulation and Analysis of Mechanical Antenna Low Frequency Communication System Based on Electret Material

                    Funds: "13th five year plan" Military Commission equipment development pre research field Fund (61405180302, LF/VLF navigation signal transmitting antenna miniaturization technology), National Natural Science Foundation (51707006), Beijing Natural Science Foundation (4192033)
                    • 摘要: 在海洋信息網絡體系日益重要的現在, 水下航行器越來越得到世界各國的重視, 無論是在民用還是在軍用上, 都扮演著重要的角色. 與水下航行器的通信主要采用的是能以較小的損耗深入海水的低頻通信技術, 而目前已有的低頻通信系統發射臺規模龐大, 天線占地廣、天線暴露、目標明顯、戰時生存能力差, 極易被摧毀且難于短期修復, 且所需功耗巨大. 鑒于此, 本文提出了一種基于復合聚合物駐極體納米材料的機械天線式低頻通信方法, 從理論上研究了其產生的低頻通信信號及計算公式, 定量分析了其在正常工作時的功率損耗和在不同介質中的衰減, 且在有限元分析軟件中建立了相關模型進行仿真研究, 并通過理論解析模型和多物理場有限元模型的雙重仿真結果的一致性, 以及仿真計算結果與機械天線樣機的實測結果的對比, 驗證了所提方法的可行性.
                    • 圖  1  駐極體式機械天線結構示意圖

                      Fig.  1  Schematic diagram of electret mechanical antenna structure

                      圖  2  磁場計算示意圖

                      Fig.  2  Schematic diagram of magnetic field calculation

                      圖  3  海水中不同頻率電磁波傳播示意圖

                      Fig.  3  Schematic diagram of electromagnetic wave propagation at different frequencies in seawater

                      圖  4  各參數對克服摩擦阻力所消耗功率的影響

                      Fig.  4  The influence of various parameters on the power consumption to overcome friction resistance

                      圖  5  機械天線三維模型網格剖分圖

                      Fig.  5  Mesh generation of three-dimensional model of mechanical antenna

                      圖  6  有限元模型與理論解析模型的結果對比圖

                      Fig.  6  Comparisons of results between finite element model and theoretical analytical model

                      圖  7  機械天線不同介質傳播效果圖

                      Fig.  7  The propagation of different media of mechanical antenna

                      圖  8  兩種機械天線仿真結果比較圖

                      Fig.  8  Comparison of simulation results of two kinds of mechanical antennas

                      圖  9  樣機測試平臺整體思路圖

                      Fig.  9  Overall idea of prototype test platform

                      圖  10  實測數據與仿真結果比較圖

                      Fig.  10  Comparison diagram of measured data and simulation results

                      360彩票
                    • [1] 閆敬, 張立, 羅小元, 濮彬, 關新平. 異步時鐘下基于信息物理融合的水下潛器協同定位算法. 自動化學報, 2019, 45(04): 739?748

                      1 Yan Jing, Zhang Li, Luo Xiao-Yuan, Pu bin, Guan Xin-Ping. Cooperative positioning algorithm of underwater vehicle based on information physical fusion under asynchronous clock. Acta Automatica Sinica, 2019, 45(04): 739?748
                      [2] 趙濤, 劉明雍, 周良榮. 自主水下航行器的研究現狀與挑戰. 火力與指揮控制, 2010, 35(6): 1?6 doi: 10.3969/j.issn.1002-0640.2010.06.001

                      2 Zhao Tao, Liu Ming-Yong, Zhou Liang-Rong. Research status and challenges of autonomous underwater vehicles. Fire Control and Command Control, 2010, 35(6): 1?6 doi: 10.3969/j.issn.1002-0640.2010.06.001
                      [3] 陶雯, 陳鼎鼎, 何寧寧. 國外海軍潛艇通信技術與裝備發展. 通信技術, 2015, 48(04): 375?381 doi: 10.3969/j.issn.1002-0802.2015.04.001

                      3 Tao Wen, Chen Ding-Ding, He Ning-Ning. Development of communication technology and equipment for naval submarines abroad. Communication Technology, 2015, 48(04): 375?381 doi: 10.3969/j.issn.1002-0802.2015.04.001
                      [4] 陸建勛. 抗干擾高頻通信系統若干問題的探討. 現代軍事通信, 2002, 10(1): 28?30

                      4 Lu Jian-xun. Discussions on Some Problems of Anti-jamming High Frequency Communication System. Modern Military Communication, 2002, 10(1): 28?30
                      [5] 5 Feng L Y, Leung K W. Dual-Frequency Folded-Parallel-Plate Antenna With Large Frequency Ratio. IEEE Transactions on Antennas and Propagation, 2016, 64(1): 340?345 doi: 10.1109/TAP.2015.2500607
                      [6] 6 Kemp M A, Franzi M, Haase A, et al. A high Q piezoelectric resonator as a portable VLF transmitter. Nature communications, 2019, 10(1): 1715 doi: 10.1038/s41467-019-09680-2
                      [7] 丁春全, 宋海洋. 機械天線運動電荷和磁偶極子輻射研究. 艦船電子工程, 2019, 39(02): 171?175 doi: 10.3969/j.issn.1672-9730.2019.02.042

                      7 Ding Chun-Quan, Song Hai-Yang. Research on the motion charge and magnetic dipole radiation of mechanical antenna. Ship Electronics Engineering, 2019, 39(02): 171?175 doi: 10.3969/j.issn.1672-9730.2019.02.042
                      [8] Prasad M N S, Huang Y, Wang Y E. Going beyond Chu harrington limit: ULF radiation with a spinning magnet array. In: Proceedings of 2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS). Montreal, Canada: IEEE, 2017.1−3
                      [9] Prasad M N S, Selvin S, Tok R U, et al. Directly modulated spinning magnet arrays for ULF communications. In: Proceedings of 2018 IEEE Radio and Wireless Symposium (RWS). Anaheim, USA: IEEE, 2018.171−173
                      [10] Bickford J A. Mechanical Antenna, U. S. Patent 10177452, January 2019
                      [11] Beihang University. A Low Frequency Communication System for Rotating Electret Mechanical Antenna, China Patent CN109004948A, December 2018
                      [12] Wuhan Institute of Ship Communication. A Low Frequency Antenna, China Patent CN108346851A, July 2018
                      [13] Xi'an University of Electronic Science and Technology. Miniaturized LF/VLF transmitting antenna based on acoustic standing wave resonant structure, China Patent CN108736157A, November 2018
                      [14] 14 Chu Y, Zhong J, Liu H, et al. Human pulse diagnosis for medical assessments using a wearable piezoelectret sensing system. Advanced Functional Materials, 2018, 28(40): 1803413 doi: 10.1002/adfm.201803413
                      [15] Erhard D P, Lovera D, von Salis-Soglio C, et al. Recent advances in the improvement of polymer electret films. Complex Macromolecular Systems II. Berlin: Springer, 2010.155−207
                      [16] 16 Pasku V, De Angelis A, Dionigi M, et al. A positioning system based on low-frequency magnetic fields. IEEE Transactions on Industrial Electronics, 2015, 63(4): 2457?2468
                      [17] 17 Reis S, Castro N, Silva M P, et al. Fabrication and characterization of high-performance polymer-based magnetoelectric DC magnetic field sensors devices. IEEE Transactions on Industrial Electronics, 2017, 64(6): 4928?4934 doi: 10.1109/TIE.2017.2668989
                      [18] 18 Gautam P R, Kumar S, Verma A, et al. Energy-Efficient Localization of Sensor Nodes in WSNs using Beacons from Rotating Directional Antenna. IEEE Transactions on Industrial Informatics, 2019, 15(11): 5827?5836 doi: 10.1109/TII.2019.2908437
                      [19] Madanayake A, Choi S, Tarek M, et al. Energy-efficient ULF/VLF transmitters based on mechanically-rotating dipoles. In: Proceedings of 2017 Moratuwa Engineering Research Conference (MERCon). Sri Lanka: IEEE, 2017.230−235.
                      [20] 王沫楠. 基于血液供給條件和力學環境的骨折愈合仿真. 自動化學報, 2018, 44(2): 240?250

                      20 Wang Mo-Nan. Fracture healing simulation based on blood supply conditions and mechanical environment. Acta Automatica Sinica, 2018, 44(2): 240?250
                      [21] 21 Liang B, Cui Y, Song X, Li L, Wang C. Multi-block electret-based mechanical antenna model for low frequency communication. International Journal of Modeling, Simulation, and Scientific Computing, 2019, 10(05): 1950036 doi: 10.1142/S1793962319500363
                      [22] Zhang Duo-Jia. Research on mechanism and modulation method of ultra-low frequency mechanical antenna [Master dissertation], Xi’an University of Technology, 2019
                    • 加載中
                    計量
                    • 文章訪問數:  3430
                    • HTML全文瀏覽量:  1197
                    • 被引次數: 0
                    出版歷程
                    • 收稿日期:  2019-09-25
                    • 錄用日期:  2019-12-15
                    • 網絡出版日期:  2020-01-17

                    目錄

                      /

                      返回文章
                      返回