2.793

                    2018影響因子

                    (CJCR)

                    • 中文核心
                    • EI
                    • 中國科技核心
                    • Scopus
                    • CSCD
                    • 英國科學文摘

                    留言板

                    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

                    姓名
                    郵箱
                    手機號碼
                    標題
                    留言內容
                    驗證碼

                    分布式多區域多能微網群協同AGC算法

                    席磊 周禮鵬

                    席磊, 周禮鵬. 分布式多區域多能微網群協同 AGC算法. 自動化學報, 2020, 46(9): 1818?1830 doi: 10.16383/j.aas.c200105
                    引用本文: 席磊, 周禮鵬. 分布式多區域多能微網群協同 AGC算法. 自動化學報, 2020, 46(9): 1818?1830 doi: 10.16383/j.aas.c200105
                    Xi Lei, Zhou Li-Peng. Coordinated AGC algorithm for distributed multi-region multi-energy micro-network group. Acta Automatica Sinica, 2020, 46(9): 1818?1830 doi: 10.16383/j.aas.c200105
                    Citation: Xi Lei, Zhou Li-Peng. Coordinated AGC algorithm for distributed multi-region multi-energy micro-network group. Acta Automatica Sinica, 2020, 46(9): 1818?1830 doi: 10.16383/j.aas.c200105

                    分布式多區域多能微網群協同AGC算法

                    doi: 10.16383/j.aas.c200105
                    基金項目: 國家自然科學基金(51707102)資助
                    詳細信息
                      作者簡介:

                      席磊:三峽大學副教授. 2016年于華南理工大學獲得博士學位. 主要研究方向為電力系統運行與控制, 自動發電控制, 智能控制方法. 本文通信作者. E-mail: xilei2014@163.com

                      周禮鵬:三峽大學碩士研究生. 主要研究方向為自動發電控制. E-mail: zlp197@126.com

                    Coordinated AGC Algorithm for Distributed Multi-region Multi-energy Micro-network Group

                    Funds: Supported by National Natural Science Foundation of China (51707102)
                    • 摘要: 綜合能源多區域協同是電網發展趨勢, 而核心問題是采用何種方法對多區域進行協同. 本文基于Q ( $\sigma $ )融入了資格跡及雙重Q學習, 提出一種面向多區域多能微網群的多智能體協同控制算法, 即DQ ( $\sigma ,\lambda $ ), 避免傳統強化學習動作探索值高估的同時, 來獲取分布式多區域的協同. 通過對改進的IEEE兩區域負荷頻率控制模型及三區域多能微網群自動發電控制(Automatic generation control, AGC)模型仿真, 結果表明, 與傳統方法相比, 所提算法具有快速收斂性和更優動態性能, 能獲得分布式多區域多能微網群的協同.
                    • 圖  1  多能微網群多區域協同控制架構

                      Fig.  1  Multi-energy microgrid group multi-region cooperative control architecture

                      圖  2  DQ ( $\sigma,\lambda $ )的算法流程

                      Fig.  2  Algorithm flow of DQ ( $\sigma,\lambda$ )

                      圖  3  BESS仿真模型

                      Fig.  3  BESS simulation model

                      圖  4  改進的IEEE標準兩區域負荷頻率控制模型

                      Fig.  4  Improved IEEE standard two-area load frequency control model

                      圖  5  兩區域預學習效果及收斂效果

                      Fig.  5  Pre-learning and convergence effect in two area

                      圖  6  階躍負荷擾動下不同算法的性能指標

                      Fig.  6  Performance index of different algorithms under step load disturbance

                      圖  7  隨機白噪聲擾動下不同算法的控制性能

                      Fig.  7  Control performance of different algorithms under stochastic white noise disturbance

                      圖  8  分布式3區域多能微網群協同AGC模型

                      Fig.  8  Coordinated AGC model of a distributed three-area multi-energy microgrid group

                      圖  9  多算法輸出效果

                      Fig.  9  Multi algorithm output effect

                      圖  10  多算法頻率曲線

                      Fig.  10  Multi algorithm frequency curve

                      圖  11  聯絡線交換功率偏差

                      Fig.  11  Exchange power deviation of tie line

                      表  1  模型傳遞函數的參數

                      Table  1  Parameters of the model transfer function

                      機組 參數 數值
                      小水電機組 二次時延TSH 3
                      伺機電動機時間常數TP 0.04
                      伺機增益KS 5
                      永態轉差系數RP 1
                      復位時間TR 0.3
                      暫態轉差系數RT 1
                      閘門最大開啟率Rmaxopen/(pu/s) 0.16
                      閘門最大關閉率Rmaxclose/(pu/s) 0.16
                      機組啟動時間TWH 1
                      生物發電機組 二次時延TSB 10
                      調速器的時間常數TGB 0.08
                      蒸汽啟動時間TWB 5
                      機械啟動時間TMB 0.3
                      微型燃氣輪機機組 二次時延TSM 5
                      燃油系統滯后時間常數T1 0.8
                      燃油系統滯后時間常數T2 0.3
                      負荷限制時間常數T3 3
                      溫度控制環路增益KT 1
                      負荷限制Lmax 1.2
                      燃料電池機組 二次時延TSF 2
                      調速器的時間常數TF 10.056
                      逆變器增益KF 9.205
                      柴油發電儲能機組 二次時延TSD 7
                      調速器的時間常數TGD 2
                      蒸汽啟動時間TWF 1
                      機械啟動時間TMD 3
                      下載: 導出CSV

                      表  2  AGC機組參數

                      Table  2  AGC unit parameters

                      區域 類型 機組序號 $\Delta P_{\rm{in}}^{\max }$
                      (kW/s)
                      $\Delta P_{\rm{in}}^{\min }$
                      (kW/s)
                      $\Delta P_{\rm{in}}^{\rm{rate }+ }$
                      (kW/s)
                      $\Delta P_{\rm{in}}^{\rm{rate} - }$
                      (kW/s)
                      區域1和區域3 小水電 G1 250 ? 250 15 ? 15
                      G2 250 ? 250 15 ? 15
                      G3 150 ? 150 8 ? 8
                      G4 150 ? 150 8 ? 8
                      G5 150 ? 150 8 ? 8
                      G6 100 ? 100 7 ? 7
                      G7 100 ? 100 7 ? 7
                      微型燃氣輪機 G8 100 ? 100 1.2 ? 1.2
                      G9 100 ? 100 1.2 ? 1.2
                      G10 150 ? 150 1.8 ? 1.8
                      G11 150 ? 150 1.8 ? 1.8
                      燃料電池 G12 200 ? 200 7 ? 7
                      G13 200 ? 200 7 ? 7
                      G14 150 ? 150 6 ? 6
                      G15 150 ? 150 6 ? 6
                      區域2 小水電 G1 250 ? 250 15 ? 15
                      G2 250 ? 250 15 ? 15
                      G3 150 ? 150 8 ? 8
                      G4 150 ? 150 8 ? 8
                      G5 150 ? 150 8 ? 8
                      G6 100 ? 100 7 ? 7
                      柴油發電機儲 G7 250 ? 250 2 ? 2
                      G8 250 ? 250 2 ? 2
                      G9 120 ? 120 1 ? 1
                      G10 120 ? 120 1 ? 1
                      生物質能 G11 200 ? 200 3 ? 3
                      G12 200 ? 200 3 ? 3
                      G13 200 ? 200 3 ? 3
                      G14 200 ? 200 3 ? 3
                      下載: 導出CSV
                      360彩票
                    • [1] Meng L X, Savaghebi M, Andrad F, Vasquez J C, Guerrero J M, Graells M. Microgrid central controller development and hierarchical control implementation in the intelligent microgrid lab of Aalborg University. In: Proceedings of the 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), Charlotte, NC, USA: IEEE, 2015. 2585?2592
                      [2] Brijesh P, Jiju K, Dhanesh P R, Joseph A. Microgrid for sustainable development of remote villages. In: Proceedings of the 2019 IEEE Region 10 Conference, Kochi, India: IEEE, 2019. 2433?2438
                      [3] Wang J, Cisse B M, Brown D, Crabb A. Development of a microgrid control system for a solar-plus-battery microgrid to support a critical facility. In: Proceedings of the 2017 IEEE Power and Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA: IEEE, 2017. 1−5
                      [4] Suyanto H, Irawati R. Study trends and challenges of the development of microgrids. In: Proceedings of the 6th IEEE International Conference on Advanced Logistics and Transport (ICALT), Bali, Indonesia: IEEE, 2017. 160?164
                      [5] Behera A, Panigrahi T K, Ray P K, Sahoo A K. A novel cascaded PID controller for automatic generation control analysis with renewable sources. IEEE/CAA Journal of Automatica Sinica, 2019, 6(6): 1438?1451 doi: 10.1109/JAS.2019.1911666
                      [6] Jagatheesan K, Anand B, Samanta S, Dey N, Ashour A S, Balas V E. Design of a proportional-integral-derivative controller for an automatic generation control of multi-area power thermal systems using firefly algorithm. IEEE/CAA Journal of Automatica Sinica, 2019, 6(2): 503?515 doi: 10.1109/JAS.2017.7510436
                      [7] 趙熙臨, 林震宇, 付波, 何莉, 徐光輝. 預測優化PID方法在含風電電力系統AGC中的應用. 電力系統及其自動化學報, 2019, 31: 16?22

                      Zhao Xi- Lin, Lin Zhen-Yu, Fu Bo, He Li, Xu Guang-Hui. Application of predictive optimization PID method to AGC of power system with windy power. Journal of Power System and Automation, 2019, 31: 16?22
                      [8] 謝平平, 李銀紅, 劉曉娟, 石東源, 段獻忠. 基于社會學習自適應細菌覓食算法的互聯電網AGC最優PI/PID控制器設計. 中國電機工程學報, 2016, 36(20): 5440?5448

                      Xie Ping-Ping, Li Yin-Hong, Liu Xiao-Juan, Shi Dong-Yuan, Duan Xian-Zhong. Optimal PI/PID controller design of AGC based on social learning adaptive bacteria foraging algorithm for interconnected power grids. Proceedings of the Chinese Society of Electrical Engineering, 2016, 36(20): 5440?5448
                      [9] Arya Y. A novel CFFOPI-FOPID controller for AGC performance enhancement of single and multi-area electric power systems. ISA Transactions, 2020, 100: 126−135
                      [10] Xi L, Yu L, Xu Y C, Wang S X, Chen X. A novel multi-agent DDQN-AD method-based distributed strategy for automatic generation control of integrated energy systems. IEEE Transactions on Sustainable Energy, 2019, DOI: 10.1109/TSTE.2019.2958361
                      [11] 吳新, 史軍, 馬偉哲, 陳俊斌. 基于極限Q學習算法的微電網自動發電控制. 新型工業化, 2019, 9(4): 22?26

                      Wu Xin, Shi Jun, Ma Wei-Zhe, Chen Jun-Bin. Automatic generation control of micro grid based on extreme Q-learning algorithm. The Journal of New Industrialization, 2019, 9(4): 22?26
                      [12] 余濤, 梁海華, 周斌. 基于R(λ) 學習的孤島微電網智能發電控制. 電力系統保護與控制, 2012, 40(13): 7?13 doi: 10.7667/j.issn.1674?3415.2012.13.002

                      Yu Tao, Liang Hai-Hua, Zhou Bin. Smart power generation control for microgrids islanded operation based on R(λ) learning. Power System Protection and Control, 2012, 40(13): 7?13 doi: 10.7667/j.issn.1674?3415.2012.13.002
                      [13] 吳麗珍, 雷艾虎, 郝曉弘. 基于模型預測控制的孤島微電網頻率二次控制策略. 蘭州理工大學學報, 2019, 45(6): 99?107 doi: 10.3969/j.issn.1673?5196.2019.06.018

                      Wu Li-Zhen, Lei Ai-Hu, Hao Xiao-Hong. Secondary control strategy of microgrid frequency of isolated island based on model predictive control. Journal of Lanzhou University of Technology, 2019, 45(6): 99?107 doi: 10.3969/j.issn.1673?5196.2019.06.018
                      [14] 李文浩. 去中心化多智能體強化學習算法研究[碩士學位論文]. 華東師范大學, 中國, 2019.

                      Li Wen-hao. Decentralized Multi-Agent Reinforcement Learning Algorithm Research. [Master thesis]. East China Normal University, China, 2019.
                      [15] 綦曉. 基于多智能體系統及自抗擾控制理論的微網負荷頻率控制策略研究[博士學位論文]. 華北電力大學(北京), 中國, 2019.

                      Qi Xiao. Research on Microgrid Load Frequency Control Strategy Based on Multi-Agent System and Active Disturbance Rejection Control Algorithm [Ph.D. dissertation]. North China Electric Power University, China, 2019.
                      [16] 曹倩. 多智能體系統一致性算法及其在微網中的應用[博士學位論文]. 電子科技大學, 中國, 2016.

                      Cao Qian. Consensus Algorithms Of Multi-Agent Systems And Its Application On Micro-Grid [Ph.D. dissertation]. University of Electronic Science and Technology of China, China, 2016.
                      [17] 衣楠. 微網分布式協調控制系統設計及仿真實現[碩士學位論文]. 華北電力大學, 中國, 2014.

                      Yi Nan. Design and Simulation of Microgrid Distributed Coordination Control System [Master thesis]. North China Electric Power University, China, 2014.
                      [18] 李楠芳. 基于多智能體技術的微電網控制算法的研究[碩士學位論文]. 華北電力大學, 中國, 2011.

                      Li Nan-Fang. Research on Control Algorithms Based on Multi-agent Technology of Microgrid [Master thesis]. North China Electric Power University, China, 2011.
                      [19] Xi L, Li Y D, Huang Y H, Lu L, Chen J F. A novel automatic generation control method based on the ecological population cooperative control for the islanded smart grid. Complexity, 2018, 2018: 1?17
                      [20] Watkins C J C H. Learning from Delayed Rewards. [Ph.D. dissertation]. King's College, Cambridge, England, 1989.
                      [21] De Asis K, Hernandez-Garcia J F, Holland G Z, Sutton R S. Multi-step reinforcement learning: A unifying algorithm. AAAI, 2018, arXiv: 1703.01327
                      [22] Hasselt H V. Double Q-learning. Neural Information Processing Systems 23, Curran Associates, Inc. 2613–2621
                      [23] Sutton R S. Learning to predict by the methods of temporal differences. Machine Learning, 1988, 3(1): 9–44
                      [24] Van Seijen H, Van Hasselt H, Whiteson S, Wiering M A. A theoretical and empirical analysis of expected sarsa. In: Proceedings of the 2009 IEEE Symposium Conference on Adaptive Dynamic Programming and Reinforcement Learning. 2009. 177−184
                      [25] Jaleeli N, Vanslyck L S. NERC's new control performance standards. IEEE Transactions on Power Systems, 1999, 14(3): 1091?1099
                      [26] Zhang X S, Yu T, Pan Z N, Yang B, Bao T. Lifelong learning for complementary generation control of interconnected power grids with high-penetration renewables and EVs. IEEE Transactions on Power Systems, 2018, 33(4): 4097?4110 doi: 10.1109/TPWRS.2017.2767318
                      [27] 黃際元. 儲能電池參與電網調頻的優化配置及控制策略研究[博士學位論文]. 湖南大學, 中國, 2015.

                      Huang Ji-Yuan. Study on Optimal Allocation and Control Strategy Design of Battery Energy Storage System for Power Grid Frequency Regulation [Ph.D. dissertation]. Hunan University, China, 2015.
                      [28] Sun Q Y, Huang B N, Li D S, Ma D H, Zhang Y B. Optimal placement of energy storage devices in microgrids via structure preserving energy function, IEEE Transactions on Industrial Informatics, 2016, 12(3): 1166?1179
                      [29] Xu D, Wu Q, Zhou B, Li C, Bai L, Huang S. Distributed multi-energy operation of coupled electricity, heating and natural gas networks, IEEE Transactions on Sustainable Energy, 2019, DOI: 10.1109/TSTE.2019.2961432
                      [30] Yu T, Zhou B, Chan K W, Chen L, Yang B. Stochastic optimal relaxed automatic generation control in non-Markov environment based on multi-step Q (λ) learning. IEEE Transactions on Power Systems, 2011, 26 (3): 1272?1282
                      [31] Sun Q Y, Han R K, Zhang H G, Zhou J G, Guerrero J M. A multi-agent-based consensus algorithm for distributed coordinated control of distributed generators in the energy internet. IEEE Transactions on Smart Grid, 2015, 6(6): 3006?3019 doi: 10.1109/TSG.2015.2412779
                      [32] Saha A K, Chowdhury S, Chowdhury S P, Crossley A. Modelling and simulation of microturbine in islanded and grid-connected mode as distributed energy resource. In: Proceedings of the 2008 IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century. Pittsburgh, PA, USA: IEEE, 2008. 1?7
                      [33] Zhang X S, Li Q, Yu T, Yang B. Consensus transfer Q-learning for decentralized generation command dispatch based on virtual generation tribe. IEEE Transactions on Smart Grid, 2018, 9(3): 2152?2165
                    • 加載中
                    圖(11) / 表(2)
                    計量
                    • 文章訪問數:  443
                    • HTML全文瀏覽量:  703
                    • PDF下載量:  145
                    • 被引次數: 0
                    出版歷程
                    • 收稿日期:  2020-03-05
                    • 錄用日期:  2020-04-27
                    • 網絡出版日期:  2020-09-28
                    • 刊出日期:  2020-09-28

                    目錄

                      /

                      返回文章
                      返回