2.793

                    2018影響因子

                    (CJCR)

                    • 中文核心
                    • EI
                    • 中國科技核心
                    • Scopus
                    • CSCD
                    • 英國科學文摘

                    留言板

                    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

                    姓名
                    郵箱
                    手機號碼
                    標題
                    留言內容
                    驗證碼

                    智能船舶綜合能源系統及其分布式優化調度方法

                    滕菲 單麒赫 李鐵山

                    滕菲, 單麒赫, 李鐵山. 智能船舶綜合能源系統及其分布式優化調度方法. 自動化學報, 2020, 46(9): 1809?1817 doi: 10.16383/j.aas.c200176
                    引用本文: 滕菲, 單麒赫, 李鐵山. 智能船舶綜合能源系統及其分布式優化調度方法. 自動化學報, 2020, 46(9): 1809?1817 doi: 10.16383/j.aas.c200176
                    Teng Fei, Shan Qi-He, Li Tie-Shan. Intelligent ship integrated energy system and its distributed optimal scheduling algorithm. Acta Automatica Sinica, 2020, 46(9): 1809?1817 doi: 10.16383/j.aas.c200176
                    Citation: Teng Fei, Shan Qi-He, Li Tie-Shan. Intelligent ship integrated energy system and its distributed optimal scheduling algorithm. Acta Automatica Sinica, 2020, 46(9): 1809?1817 doi: 10.16383/j.aas.c200176

                    智能船舶綜合能源系統及其分布式優化調度方法

                    doi: 10.16383/j.aas.c200176
                    基金項目: 國家自然科學基金(61803064), 中央高?;究蒲袠I務費專項資金(3132020103, 3132020125)資助
                    詳細信息
                      作者簡介:

                      滕菲:大連海事大學船舶電氣工程學院講師. 主要研究方向為分布式優化技術及其在綜合能源系統領域相關應用.E-mail: brenda_teng@163.com

                      單麒赫:大連海事大學航海學院副教授. 主要研究方向為多智能體控制, 分布式優化, 船舶能耗優化. 本文通信作者.E-mail: shanqihe@dlmu.edu.cn

                      李鐵山:電子科技大學自動化工程學院教授. 主要研究方向為智能船舶控制理論與技術, 非線性系統智能控制理論與應用研究.E-mail: litieshan073@uestc.edu.cn

                    Intelligent Ship Integrated Energy System and Its Distributed Optimal Scheduling Algorithm

                    Funds: Supported by National Natural Science Foundation of China (61803064), the Fundamental Research Funds for the Central Universities (3132020103, 3132020125)
                    • 摘要: 船舶航運污染是阻礙海洋經濟發展、海洋強國建設的瓶頸問題. 智能船舶為航運業綠色環保發展提供了重要手段. 為進一步開發船載新能源, 提升能源綜合利用效率, 降低船舶航運污染排放, 本文構建以能量優化調度系統為核心、以能源轉換中心為樞紐的智能船舶綜合能源系統; 考慮其特有的動力系統負荷需求、航行低污染排放量標準以及電?熱多能流耦合供能特性, 建立智能船舶綜合能源系統能量優化調度目標函數及相關約束條件; 并基于寬度學習、帶有廣義噪聲的多智能體分布式優化相關理論, 提出可快速準確地預測全航程各時段負荷需求、可容納復雜干擾的分布式優化調度方法, 實現高效的智能船舶綜合能源系統能量優化調度, 保障智能船舶經濟、可靠、穩定航行. 仿真分析驗證了所提出智能船舶綜合能源系統分布式優化調度方法的有效性.
                    • 圖  1  智能船舶綜合能源系統基本結構框圖

                      Fig.  1  The typical architecture of intelligent ship integrated energy system

                      圖  2  智能船舶綜合能源系統仿真模型

                      Fig.  2  The simulation model of intelligent ship integrated energy system

                      圖  3  智能船舶綜合能源系統全航程分布式優化調度考慮的廣義噪聲干擾

                      Fig.  3  The general noise considered in the distributed optimal scheduling during the whole voyage of intelligent ship integrated energy system

                      圖  4  船舶航行$6\sim 10 $小時時段各供能設備電輸出功率

                      Fig.  4  Electricity output of each energy supply equipment during $6\sim 10 $ hours sailing

                      圖  5  船舶航行$6\sim 10 $小時時段各供能設備熱輸出功率

                      Fig.  5  Heat output of each energy supply equipment during $6\sim 10 $ hours sailing

                      圖  6  智能船舶航行航線全航程各時段各供能設備最優電輸出功率

                      Fig.  6  The optimal electricity output of each energy supply equipment of intelligent ship in different periods of the whole voyage

                      圖  7  智能船舶航行航線全航程各時段各供能設備最優熱輸出功率

                      Fig.  7  The optimal heat output of each energy supply equipment of intelligent ship in different periods of the whole voyage

                      表  1  智能船舶全航程各時段電?熱負荷預測結果

                      Table  1  The forecast results of electric and thermal load of intelligent ship in different periods of the whole voyage

                      全航程各時段熱
                      負荷預測量 (MW)
                      1小時2小時3小時4小時5小時6小時7小時8小時9小時10小時11小時12小時
                      19.000028.988933.000034.000032.000027.000020.000016.000018.000027.978033.000034.0000
                      13小時14小時15小時16小時17小時18小時19小時20小時21小時22小時23小時24小時
                      36.000029.000020.000016.000019.000029.967130.000035.000031.000028.000019.495718.0000
                      全航程各時段電
                      負荷預測量 (MW)
                      1小時2小時3小時4小時5小時6小時7小時8小時9小時10小時11小時12小時
                      29.360055.325561.610062.430060.830048.850033.730025.250032.160057.388561.080059.7900
                      13小時14小時15小時16小時17小時18小時19小時20小時21小時22小時23小時24小時
                      65.180055.480035.250026.600032.700054.362954.590064.240056.610054.930032.903928.2700
                      下載: 導出CSV
                      360彩票
                    • [1] 十八大之海洋強國戰略[Online], available: https://www.sohu.com/a/195834582_811190, 2017年10月1日

                      Sea Strategic thought at the 18th CPC National Congress [Online], available: https://www.sohu.com/a/195834582_811190, October 1, 2017
                      [2] 十九大報告全文[Online], available: http://sh.people.com.cn/n2/2018/0313/c134768-31338145.html, 2018年3月13日

                      The 19th National Congress of the Communist Party of China [Online], available: http://sh.people.com.cn/n2/2018/0313/c134768-31338145.html, March 13, 2018
                      [3] 國務院印發《中國制造2050》[Online], available: http://www.gov.cn/zhengce/content/2015-05/19/content_9784.htm, 2015年5月19日

                      Notice of the State Council on Issuing the “Made in China (2025)” [Online], available: http://www.gov.cn/zhengce/con-tent/2015-05/19/content_9784.htm, May 19, 2015
                      [4] IMO簽署協議: 2050年海運業碳排放量減少一半[Online], available: http://www.tanpaifang.com/jienenjianpai/2018/0416/61777.html, 2018年4月16日

                      IMO Signed an Agreement to Halve Carbon Emissions of Shipping Industry in 2050 [Online], available: http://www.tanpaifang.com/jienenjianpai/2018/0416/61777.html, April 16, 2018
                      [5] 范愛龍, 賀亞鵬, 嚴新平, 王駿騰. 智能新能源船舶的概念及關鍵技術. 船舶工程, 2020, 42(3): 9?14

                      Fan Ai-Long, He Ya-Peng, Yan Xin-Ping, Wang Jun-Teng. Concept and key technologies of intelligent new energy ship. Ship Engineering, 2020, 42(3): 9?14
                      [6] Tsekouras G J, Kanellos F D, Prousalidis J. Simplified method for the assessment of ship electric power systems operation cost reduction from energy storage and renewable energy sources integration. IET Electrical Systems in Transportation, 2015, 5(2): 61?69 doi: 10.1049/iet-est.2013.0011
                      [7] Michalopoulos P, Kanellos F D, Tsekouras G J, Prousalidis J M. A method for optimal operation of complex ship power systems employing shaft electric machines. IEEE Transactions on Transportation Electrification, 2016, 2(4): 547?557 doi: 10.1109/TTE.2016.2572093
                      [8] Khooban M H, Dragicevic T, Blaabjerg F, Delimar M. Shipboard microgrids: A novel approach to load frequency control. IEEE Transactions on Sustainable Energy, 2018, 9(2): 843?852 doi: 10.1109/TSTE.2017.2763605
                      [9] 賈宏杰, 王丹, 徐憲東, 余曉丹. 區域綜合能源系統若干問題研究. 電力系統自動化, 2015, 39(7): 198?207

                      Jia Hong-Jie, Wang Dan, Xu Xian-Dong, Yu Xiao-Dan. Research on some key problems related to integrated energy systems. Automation of Electric Power Systems, 2015, 39(7): 198?207
                      [10] 孫秋野, 滕菲, 張化光. 能源互聯網及其關鍵控制問題. 自動化學報, 2017, 43(2): 176?194

                      Sun Qiu-Ye, Teng Fei, Zhang Hua-Guang. Energy internet and its key control issues. Acta Automatica Sinica, 2017, 43(2): 176?194
                      [11] 孫宏斌, 潘昭光, 郭慶來. 多能流能量管理研究: 挑戰與展望. 電力系統自動化, 2016, 40(15): 1?8 doi: 10.7500/AEPS20160522006

                      Sun Hong-Bin, Pan Zhao-Guang, Guo Qing-Lai. Energy management for multi-energy flow: challenges and prospects. Automation of Electric Power Systems, 2016, 40(15): 1?8 doi: 10.7500/AEPS20160522006
                      [12] 郭創新, 王惠如, 張伊寧, 何宇斌. 面向區域能源互聯網的“源—網—荷”協同規劃綜述. 電網技術, 2019, 43(9): 3071?3080

                      Guo Chuang-Xin, Wang Hui-Ru, Zhang Yi-Ning, He Yu-Bin. Review of “source-grid-load” co-planning orienting to regional energy internet power system technology. Power System Technology, 2019, 43(9): 3071?3080
                      [13] 王佳穎, 史俊祎, 文福拴, 李繼紅, 張利軍, 徐晨博. 計及需求響應的光熱電站熱電聯供型微網的優化運行. 電力系統自動化, 2019, 43(1): 176?189

                      Wang Jia-Ying, Shi Jun-Yi, Wen Fu-Shuan, Li Ji-Hong, Zhang Li-Jun, Xu Chen-Bo. Optimal operation of CHP microgrid with concentrating solar power plants considering demand response. Automation of Electric Power Systems, 2019, 43(1): 176?189
                      [14] 孫宏斌, 郭慶來, 吳文傳, 王彬, 夏天. 面向能源互聯網的多能流綜合能量管理系統: 設計與應用. 電力系統自動化, 2019, 43(12): 122?128, 171 doi: 10.7500/AEPS20190228003

                      Sun Hong-Bin, Guo Qing-Lai, Wu Wen-Chuan, Wang Bin, Xia Tian. Integrated energy management system with multi-agent flow for energy internet: design and application. Automation of Electric Power Systems, 2019, 43(12): 122?128, 171 doi: 10.7500/AEPS20190228003
                      [15] 唐昊, 劉暢, 楊明, 湯必強, 許丹, 呂凱. 考慮電網調峰需求的工業園區主動配電系統調度學習優化. 自動化學報, DOI: 10.16383/j.aas.c190079, 2019.

                      Tang Hao, Liu Chang, Yang Ming, Tang Bi-Qiang, Xu Dan, Lv Kai. Learning-based optimization of active distribution system dispatch in industrial park considering the peak operation demand of power grid. Acta Automatica Sinica, DOI: 10.16383/j.aas.c190079, 2019.
                      [16] 陳剛, 李志勇. 集合約束下多智能體系統分布式固定時間優化控制. 自動化學報, DOI: 10.16383/j.aas.c190416, 2019.

                      Chen Gang, Li Zhi-Yong. Distributed fixed-time optimization control for multi-agent systems with set constraints. Acta Automatica Sinica, DOI: 10.16383/j.aas.c190416, 2019.
                      [17] 殷爽睿, 艾芊, 曾順奇, 吳瓊, 郝然, 江迪. 能源互聯網多能分布式優化研究挑戰與展望. 電網技術, 2018, 42(5): 1359?1369

                      Yin Shuang-Rui, Ai Qian, Zeng Shun-Qi, Wu Qiong, Hao Ran, Jiang Di. Challenges and prospects of multi-energy distributed optimization for Energy Internet. Power System Technology, 2018, 42(5): 1359?1369
                      [18] 席磊, 周禮鵬.分布式多區域多能微網群協同AGC 算法. 自動化學報, DOI: 10.16383/j.aas.c200105, 2020.

                      Xi Lei, Zhou Li-Peng. Coordinated AGC algorithm for distributed multi-region multi-energy micro-network group. Acta Automatica Sinica, DOI: 10.16383/j.aas.c200105, 2020.
                      [19] Yang S P, Tan S C, Xu J X. Consensus based approach for economic dispatch problem in a smart grid. IEEE Transactions on Power Systems, 2013, 28(4): 4416?4426 doi: 10.1109/TPWRS.2013.2271640
                      [20] Guo F H, Wen C Y, Mao J F, Song Y D. Distributed economic dispatch for smart grids with random wind power. IEEE Transactions on Smart Grid, 2016, 7(3): 1572?1583 doi: 10.1109/TSG.2015.2434831
                      [21] Binetti G, Davoudi A, Lewis F L, Naso D, Turchiano B. Distributed consensus-based economic dispatch with transmission losses. IEEE Transactions on Power System, 2014, 29(4): 1711?1720 doi: 10.1109/TPWRS.2014.2299436
                      [22] Wang Z G, Wu W C, Zhang B M. A fully distributed power dispatch method for fast frequency recovery and minimal generation cost in autonomous microgrids. IEEE Transactions on Smart Grid, 2016, 7(1): 19?31 doi: 10.1109/TSG.2015.2493638
                      [23] Chen G, Ren J H, Feng E N. Distributed finite-time economic dispatch of a network of energy resources. IEEE Transactions on Smart Grid, 2017, 8(2): 822?832
                      [24] Zhang H G, Li Y S, Gao D W Z, Zhou J G. Distributed optimal energy management for energy internet. IEEE Transactions on Industrial Informatics, 2017, 13(6): 3081?3097 doi: 10.1109/TII.2017.2714199
                      [25] Kanellos F D, Tsekouras G J, Hatziargyriou N D. Optimal demand-side management and power generation scheduling in an all-electric ship. IEEE Transactions on Sustainable Energy, 2014, 5(4): 1166?1175 doi: 10.1109/TSTE.2014.2336973
                      [26] Chen C L P, Liu Z L. Broad learning system: an effective and efficient incremental learning system without the need for deep architecture. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(1): 10?24 doi: 10.1109/TNNLS.2017.2716952
                      [27] Yang S F, Liu Q S, Wang J. A multi-agent system with a proportional-integral protocol for distributed constrained optimization. IEEE Transactions on Automatic Control, 2017, 62(7): 3461?3467 doi: 10.1109/TAC.2016.2610945
                      [28] Zhang H G, Teng F, Sun Q Y, Shan Q H. Distributed optimization based on a multiagent system disturbed by genera noise. IEEE Transactions on Cybernetics, 2019, 49(8): 3209?3213 doi: 10.1109/TCYB.2018.2839912
                    • 加載中
                    圖(7) / 表(1)
                    計量
                    • 文章訪問數:  542
                    • HTML全文瀏覽量:  941
                    • PDF下載量:  209
                    • 被引次數: 0
                    出版歷程
                    • 收稿日期:  2020-03-31
                    • 錄用日期:  2020-06-28
                    • 網絡出版日期:  2020-09-28
                    • 刊出日期:  2020-09-28

                    目錄

                      /

                      返回文章
                      返回