2.793

                    2018影響因子

                    (CJCR)

                    • 中文核心
                    • EI
                    • 中國科技核心
                    • Scopus
                    • CSCD
                    • 英國科學文摘

                    留言板

                    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

                    姓名
                    郵箱
                    手機號碼
                    標題
                    留言內容
                    驗證碼

                    高階系統方法—Ⅱ.能控性與全驅性

                    段廣仁

                    段廣仁. 高階系統方法-Ⅱ.能控性與全驅性. 自動化學報, 2020, 46(8): 1571?1581 doi: 10.16383/j.aas.c200369
                    引用本文: 段廣仁. 高階系統方法-Ⅱ.能控性與全驅性. 自動化學報, 2020, 46(8): 1571?1581 doi: 10.16383/j.aas.c200369
                    Duan Guang-Ren. High-order system approaches: Ⅱ. Controllability and full-actuation. Acta Automatica Sinica, 2020, 46(8): 1571?1581 doi: 10.16383/j.aas.c200369
                    Citation: Duan Guang-Ren. High-order system approaches: Ⅱ. Controllability and full-actuation. Acta Automatica Sinica, 2020, 46(8): 1571?1581 doi: 10.16383/j.aas.c200369

                    高階系統方法—Ⅱ.能控性與全驅性

                    doi: 10.16383/j.aas.c200369
                    基金項目: 

                    國家自然科學基金重大項目 61690210

                    國家自然科學基金重大項目 61690212

                    國家自然科學基金 61333003

                    機器人與系統國家重點實驗室自主計劃任務(HIT) SKLRS201716A

                    詳細信息
                      作者簡介:

                      段廣仁??中國科學院院士, 國家杰出青年基金獲得者, 長江學者特聘教授, CAA Fellow, IEEE Fellow, IET Fellow. 1989年獲哈爾濱工業大學博士學位, 1991年起任哈爾濱工業大學教授, 現為哈爾濱工業大學控制理論與制導技術研究中心主任.主要研究方向為控制系統的參數化設計, 魯棒控制, 廣義系統, 航天器制導與控制. E-mail: g.r.duan@hit.edu.cn

                    • 本文責任編委??賀威

                    High-order System Approaches: Ⅱ. Controllability and Full-actuation

                    Funds: 

                    the Major Program of National Natural Science Foundation of China 61690210

                    the Major Program of National Natural Science Foundation of China 61690212

                    National Natural Science Foundation of China 61333003

                    the Self-Planned Task of State Key Laboratory of Robotics and System (HIT) SKLRS201716A

                    More Information
                      Author Bio:

                      DUAN Guang-Ren??Academician of the Chinese Academy of Sciences, winner of the National Science Fund for Distinguished Young Scholars, Distinguished Professor of Chang Jiang Scholars Program, CAA Fellow, IEEE Fellow and IET Fellow. He received his Ph. D. degree from Harbin Institute of Technology in 1989, and has been professor at Harbin Institute of Technology since 1991. He is currently the director of the Center for Control Theory and Guidance Technology, Harbin Institute of Technology. His research interest covers parametric design of control systems, robust control, descriptor systems, spacecraft guidance and control

                    • Recommended by Associate Editor HE Wei
                    • 摘要: 本文首先簡述了基于狀態空間模型的一階動態系統的能控性進展, 指出了一階系統方法中卡爾曼能控性體系的一些問題.然后證明了線性定常系統能控的充要條件是它能化成一個高階全驅系統, 同時還在一定程度上將這一結果推廣到非線性系統的情形.基于這一發現, 本文定義了一般動態系統的完全能控性, 明確其意義在于存在控制律使得閉環系統為一線性定常的高階系統, 并且可以任意配置閉環特征多項式的系數矩陣, 同時還指出其多方面相關結論.
                      Recommended by Associate Editor HE Wei
                      1)  本文責任編委??賀威
                    • [1] 段廣仁.高階系統方法-Ⅰ.全驅系統與參數化設計.自動化學報, 2020, 46(7): 1333-1345 doi: 10.16383/j.aas.c200234

                      Duan Guang-Ren. High-order system approaches: Ⅰ. Full-actuated systems and parametric designs. Acta Automatica Sinica, 2020, 46(7): 1333-1345 doi: 10.16383/j.aas.c200234
                      [2] 陳云烽.一類非線性系統的能控性條件.控制理論與應用, 1985, 2(2): 114-118 http://www.cnki.com.cn/Article/CJFDTotal-KZLY198502013.htm

                      Chen Yun-Feng. A sufficient condition for controllability of a class of nonlinear systems. Control Theory & Applications, 1985, 2(2): 114-118 http://www.cnki.com.cn/Article/CJFDTotal-KZLY198502013.htm
                      [3] 陳彭年, 賀建勛.一類控制有約束的非線性系統的全局可控性.控制理論與應用, 1986, 3(2): 94-99 http://www.cnki.com.cn/Article/CJFDTotal-KZLY198602012.htm

                      Chen Peng-Nian, He Jian-Xun. Global controllability of a class of nonlinear systems with restrained control. Control Theory & Applications, 1986, 3(2): 94-99 http://www.cnki.com.cn/Article/CJFDTotal-KZLY198602012.htm
                      [4] Vidyasagar M. A controllability condition for nonlinear systems. IEEE Transactions on Automatic Control, 1972, 17(4): 569-570 doi: 10.1109/TAC.1972.1100064
                      [5] Mirza K, Womack B. Controllability of a class nonlinear systems. IEEE Transactions on Automatic Control, 1972, 16(4): 531-535
                      [6] Balachandran K, Somasundaram D. Controllability of nonlinear systems consisting of a bilinear mode with time-varying delays in control. Automatica, 1984, 20(2): 257-258 doi: 10.1016/0005-1098(84)90035-9
                      [7] Somasundaram D, Balachandran K. Controllability of nonlinear systems consisting of a bilinear mode with distributed delays in control. IEEE Transactions on Automatic Control, 1984, 29(6): 573-575 doi: 10.1109/TAC.1984.1103583
                      [8] Balachandran K, Dauer J P. Controllability of perturbed nonlinear delay systems. IEEE Transactions on Automatic Control, 1987, 32(2): 172-174 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d6ddadd1122a769d6182f0779de53bd2
                      [9] Klamka J. On the local controllability of perturbed nonlinear systems. IEEE Transactions on Automatic Control, 1975, 20(2): 289-291 doi: 10.1109/TAC.1975.1100929
                      [10] Klamka J. On the global controllability of perturbed nonlinear systems. IEEE Transactions on Automatic Control, 1975, 20(1): 170-172 http://cn.bing.com/academic/profile?id=4e89d00e0ca33e72fa1ccfddb3124007&encoded=0&v=paper_preview&mkt=zh-cn
                      [11] Klamka J. Relative controllability of nonlinear systems with delays in control. Automatica, 1976, 12(6): 633-634 doi: 10.1016/0005-1098(76)90046-7
                      [12] Klamka J. Controllability of nonlinear systems with delay in control. IEEE Transactions on Automatic Control, 1975, 20(5): 702-704 doi: 10.1109/TAC.1975.1101046
                      [13] Sun Y M. Necessary and sufficient condition for global controllability of planar affine nonlinear systems. IEEE Transactions on Automatic Control, 2007, 52(8): 1454-1460 doi: 10.1109/TAC.2007.902750
                      [14] Sun Y M. Further results on global controllability of planar nonlinear systems. IEEE Transactions on Automatic Control, 2010, 55(8): 1872-1875 doi: 10.1109/TAC.2010.2048054
                      [15] Nam K, Araostathis A. A sufficient condition for local controllability of nonlinear systems along closed orbits. IEEE Transactions on Automatic Control, 1992, 37(3): 378-380 doi: 10.1109/9.119642
                      [16] Celikovsky S, Nijmeijer H. On the relation between local controllability and stabilizability for a class of nonlinear systems. IEEE Transactions on Automatic Control, 1997, 42(1): 90-94 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=73132ce6f6c6439719d30dfdf895b228
                      [17] Celikovsky S. Local stabilization and controllability of a class of non-triangular nonlinear systems. IEEE Transactions on Automatic Control, 2000, 45(10): 1909-1913 doi: 10.1109/TAC.2000.880997
                      [18] Mirza K, Womack B. On the controllability of a class of nonlinear systems. IEEE Transactions on Automatic Control, 1971, 16(5): 497-483 doi: 10.1109/TAC.1971.1099795
                      [19] Mirza K, Womack B. On the controllability of nonlinear time-delay systems. IEEE Transactions on Automatic Control, 1972, 17(6): 812-814 doi: 10.1109/TAC.1972.1100155
                      [20] 張嗣瀛, 王景才, 劉曉平.微分幾何方法與非線性控制系統(5).信息與控制, 1992, 21(5): 288-294 http://www.cnki.com.cn/Article/CJFDTotal-XXYK199205006.htm

                      Zhang Si-Ying, Wang Jing-Cai, Liu Xiao-Ping. Differential geometric methods and nonlinear control systems. Information and Control, 1992, 21(5): 288-294 http://www.cnki.com.cn/Article/CJFDTotal-XXYK199205006.htm
                      [21] 劉曉平, 張嗣瀛.對稱非線性控制系統的能控性.控制理論與應用, 1991, 8(4): 452-455 http://www.cnki.com.cn/Article/CJFDTotal-KZLY199104018.htm

                      Liu Xiao-Ping, Zhang Si-Ying. Controllability of nonlinear control systems with symmetries. Control Theory & Applications, 1991, 8(4): 452-455 http://www.cnki.com.cn/Article/CJFDTotal-KZLY199104018.htm
                      [22] 劉曉平.對稱非線性控制系統的能控分解.控制與決策, 1992, 7(1): 63-66 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=89520

                      Liu Xiao-Ping. Controllability decomposition for nonlinear control systems with symmetries. Control and Decision, 1992, 7(1): 63-66 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=89520
                      [23] 趙軍, 張嗣瀛.關于非線性的對稱性、可達性與可控性.控制理論與應用, 1992, 9(2): 148-154 http://www.cnki.com.cn/Article/CJFDTotal-KZLY199202006.htm

                      Zhao Jun, Zhang Si-Ying. On symmetries, reachability and controllability of nonlinear systems. Control Theory & Applications, 1992, 9(2): 148-154 http://www.cnki.com.cn/Article/CJFDTotal-KZLY199202006.htm
                      [24] 井元偉, 胡三清, 劉曉平, 張嗣瀛.可解的具有廣義對稱性的非線性系統的同構分解與可控性.控制理論與應用, 1996, 13(2): 259-263

                      Jing Yuan-Wei, Hu San-Qing, Liu Xiao-Ping, Zhang Si-Ying. Isomorphic decompositon and controllability of systems possessing solvable general symmetries. Control Theory & Applications, 1996, 13(2): 259-263
                      [25] 鐵林, 蔡開元, 林巖.雙線性系統可控性綜述.自動化學報, 2011, 37(9): 1040-1049 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zdhxb201109002

                      Tie Lin, Cai Kai-Yuan, Lin Yan. A survey on the controllability of bilinear systems. Acta Automatica Sinica, 2011, 37(9): 1040-1049 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zdhxb201109002
                      [26] Bellman R, Bentsman J, Meerkov S. Vibrational control of nonlinear systems: Vibrational controllability and transient behavior. IEEE Transactions on Automatic Control, 1986, 31(8): 717-724 doi: 10.1109/TAC.1986.1104383
                      [27] Cortes J, Martinez S, Bullo F. On nonlinear controllability and series expansions for Lagrangian systems with dissipative forces. IEEE Transactions on Automatic Control, 2002, 47(8): 1396-1401 doi: 10.1109/TAC.2002.801187
                      [28] Melody J, Basar T, Bullo F. On nonlinear controllability of homogeneous systems linear in control. IEEE Transactions on Automatic Control, 2003, 48(1): 139-143 doi: 10.1109/TAC.2002.806667
                      [29] Sunahara Y, Kabeuchi T, Asada Y, Aihara S, Kishino K. On stochastic controllability for nonlinear systems. IEEE Transactions on Automatic Control, 1974, 19(1): 49-54 doi: 10.1109/TAC.1974.1100464
                      [30] 賀昌政, 楊柳.非線性控制系統的能控性及在剛體動力學中的應用.控制理論與應用, 2000, 17(2): 204-208 doi: 10.3969/j.issn.1000-8152.2000.02.011

                      He Chang-Zheng, Yang Liu. The controllability of nonlinear control system and its application to dynamics of rigid body. Control Theory & Applications, 2000, 17(2): 204-208 doi: 10.3969/j.issn.1000-8152.2000.02.011
                      [31] 王曉明, 崔平遠, 崔祜濤.仿射非線性系統的能控性.控制與決策, 2008, 23(10): 1129-1134 doi: 10.3321/j.issn:1001-0920.2008.10.010

                      Wang Xiao-Ming, Cui Ping-Yuan, Cui Hu-Tao. Controllability of affine nonlinear systems. Control and Decision, 2008, 23(10): 1129-1134 doi: 10.3321/j.issn:1001-0920.2008.10.010
                      [32] Bhat S R. Controllability of nonlinear time-varying systems: Applications to spacecraft attitude control using magnetic actuation. IEEE Transactions on Automatic Control, 2005, 50(11): 1725-1735 doi: 10.1109/TAC.2005.858686
                      [33] 徐志宇, 許維勝, 余有靈, 吳啟迪. DC-DC變換器在恒功率負載下的能控性.控制理論與應用, 2010, 27(9): 1273-1276 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kzllyyy201009026

                      Xu Zhi-Yu, Xu Wei-Sheng, Yu You-Ling, Wu Qi-Di. Controllability of DC-DC converters with constant power-load. Control Theory & Applications, 2010, 27(9): 1273-1276 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kzllyyy201009026
                      [34] Nishimura Y, Tsubakino D. Local controllability of single-input nonlinear systems based on deterministic wiener processes. IEEE Transactions on Automatic Control, 2020, 65(1): 354-360 doi: 10.1109/TAC.2019.2912452
                      [35] Muller M A, Liberzon D, Allgower F. Norm-controllability of nonlinear systems. IEEE Transactions on Automatic Control, 2015, 60(7): 1825-1840 doi: 10.1109/TAC.2015.2394953
                      [36] Davison E, Silverman L, Varaiya P. Controllability of a class of nonlinear time-variable systems. IEEE Transactions on Automatic Control, 1967, 12(6): 791-792 doi: 10.1109/TAC.1967.1098756
                      [37] 周鴻興, 趙怡.非線性系統的能控性理論.控制理論與應用, 1988, 5(2): 1-14 http://www.cnki.com.cn/Article/CJFDTotal-KZLY198802000.htm

                      Zhou Hong-Xing, Zhao Yi. A study of controllability theory of nonlinear systems. Control Theory & Applications, 1988, 5(2): 1-14 http://www.cnki.com.cn/Article/CJFDTotal-KZLY198802000.htm
                      [38] 程代展, 秦化淑.非線性系統的幾何方法(下)-目前動態與展望.控制理論與應用, 1987, 4(2): 1-9 http://www.cnki.com.cn/Article/CJFDTotal-KZLY198702000.htm

                      Cheng Dai-Zhan, Qin Hua-Shu. Geometric methods for nonlinear systems. Ⅱ. Current trends and prospects. Control Theory & Applications, 1987, 4(2): 1-9 http://www.cnki.com.cn/Article/CJFDTotal-KZLY198702000.htm
                      [39] Gershwin S, Jacobson D. A controllability theory for nonlinear systems. IEEE Transactions on Automatic Control, 1971, 16(1): 37-46 doi: 10.1109/TAC.1971.1099624
                      [40] 劉成, 馮元琨, 李春文, 杜繼宏.基于非線性系統受控因子的能控性分析方法.控制與決策, 1997, 12(S1): 504-507 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700345805

                      Liu Cheng, Feng Yuan-Kun, Li Chun-Wen, Du Ji-Hong. A method to nonlinear controllability based on its controllable factors. Control and Decision, 1997, 12(S1): 504-507 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700345805
                      [41] Hanba S. Controllability to the origin implies state-feedback stabilizability for discrete-time nonlinear systems. Automatica, 2017, 76: 49-52 doi: 10.1016/j.automatica.2016.09.046
                      [42] 王文濤, 李媛.一類非線性微分代數系統的能控性子分布.控制理論與應用, 2009, 26(10): 1126-1129 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kzllyyy200910012

                      Wang Wen-Tao, Li Yuan. Controllability distributions of a class of nonlinear differential-algebraic systems. Control Theory & Applications, 2009, 26(10): 1126-1129 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kzllyyy200910012
                      [43] 王文濤, 劉曉平, 趙軍.非線性奇異系統的能控性子分布.自動化學報, 2004, 30(5): 716-722 http://www.yy651.cn/article/id/16206

                      Wang Wen-Tao, Liu Xiao-Ping, Zhao Jun. Controllability distributions of nonlinear singular systems. Acta Automatica Sinica, 2004, 30(5): 716-722 http://www.yy651.cn/article/id/16206
                      [44] Zheng Y F, Willems J C, Zhang C S. A polynomial approach to nonlinear system controllability. IEEE Transactions on Automatic Control, 2001, 46(11): 1782-1788 doi: 10.1109/9.964691
                      [45] 高為炳, 程勉, 夏小華.非線性控制系統的發展.自動化學報, 1991, 17(5): 513-523 http://www.yy651.cn/article/id/14560

                      Gao Wei-Bing, Cheng Mian, Xia Xiao-Hua. The development of nonlinear control systems. Acta Automatica Sinica, 1991, 17(5): 513-523 http://www.yy651.cn/article/id/14560
                      [46] Casti J L. Recent developments and future perspectives in nonlinear system theory. SIAM Review, 1982, 24(3): 301-331 doi: 10.1137/1024065
                      [47] Brocket R W. Asymptotic stability and feedback stabilization. Differential Geometric Control Theory. Boston: Birkhauser, 1983. 181-191
                      [48] Kalman R. On the general theory of control systems. IRE Transactions on Automatic Control, 1959, 4(3): 110 doi: 10.1109/TAC.1959.1104873
                      [49] Kalman R E. On the general theory of control systems. IFAC Proceedings Volumes, 1960, 1(1): 491-502 doi: 10.1016/S1474-6670(17)70094-8
                      [50] 段廣仁.線性系統理論(上下冊).第3版.北京:科學出版社, 2016.

                      Duan Guang-Ren. Linear System Theory (two volumes) (Third edition). Science Press, 2016.
                      [51] Duan G R. Analysis and Design of Descriptor Linear Systems. New York, USA: Springer, 2010.
                      [52] Duan G R. Generalized Sylvester Equations: Unified Parametric Solutions. Raton: CRC Press, 2015.
                      [53] Duan G R, Gao Y J. State-space realization and generalized Popov Belevitch Hautus criterion for high-order linear systems - The singular case. International Journal of Control, Automation and Systems, 2020, 18(8): 2038-2047 doi: 10.1007/s12555-019-0212-4
                      [54] 李文林, 高為炳.非線性控制系統的可控標準型問題.航空學報, 1989, 10(5): 249-258 doi: 10.3321/j.issn:1000-6893.1989.05.007

                      Li Wen-Lin, Gao Wei-Bing. Controllability canonical form for nonlinear control systems. Acta Aeronautica ET Astronautica Sinica, 1989, 10(5): 249-258 doi: 10.3321/j.issn:1000-6893.1989.05.007
                      [55] 段廣仁.飛行器控制的偽線性系統方法-第二部分:方法與展望.宇航學報, 2020, 41(7): 839-849

                      Duan Guang-Ren. Quasi-linear system approaches for flight vehicle control - Part 2: Methods and prospects. Journal of Astronautics, 2020, 41(7): 839-849
                      [56] 段廣仁.飛行器控制的偽線性系統方法-第一部分:綜述與問題.宇航學報, 2020, 41(6): 633-646

                      Duan Guang-Ren. Quasi-linear system approaches for flight vehicle control - Part 1: An overview and problems. Journal of Astronautics, 2020, 41(6): 633-646
                    • 加載中
                    計量
                    • 文章訪問數:  855
                    • HTML全文瀏覽量:  118
                    • PDF下載量:  333
                    • 被引次數: 0
                    出版歷程
                    • 收稿日期:  2020-06-15
                    • 錄用日期:  2020-07-15
                    • 刊出日期:  2020-08-26

                    目錄

                      /

                      返回文章
                      返回
                      360彩票