2.793

                    2018影響因子

                    (CJCR)

                    • 中文核心
                    • EI
                    • 中國科技核心
                    • Scopus
                    • CSCD
                    • 英國科學文摘

                    留言板

                    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

                    姓名
                    郵箱
                    手機號碼
                    標題
                    留言內容
                    驗證碼

                    具有未建模動態的互聯大系統事件觸發自適應模糊控制

                    趙光同 曹亮 周琪 李鴻一

                    趙光同,  曹亮,  周琪,  李鴻一.  具有未建模動態的互聯大系統事件觸發自適應模糊控制.  自動化學報,  2021,  47(8): 1932?1942 doi: 10.16383/j.aas.c200846
                    引用本文: 趙光同,  曹亮,  周琪,  李鴻一.  具有未建模動態的互聯大系統事件觸發自適應模糊控制.  自動化學報,  2021,  47(8): 1932?1942 doi: 10.16383/j.aas.c200846
                    Zhao Guang-Tong,  Cao Liang,  Zhou Qi,  Li Hong-Yi.  Event-triggered adaptive fuzzy control for interconnected large-scale systems with unmodeled dynamics.  Acta Automatica Sinica,  2021,  47(8): 1932?1942 doi: 10.16383/j.aas.c200846
                    Citation: Zhao Guang-Tong,  Cao Liang,  Zhou Qi,  Li Hong-Yi.  Event-triggered adaptive fuzzy control for interconnected large-scale systems with unmodeled dynamics.  Acta Automatica Sinica,  2021,  47(8): 1932?1942 doi: 10.16383/j.aas.c200846

                    具有未建模動態的互聯大系統事件觸發自適應模糊控制

                    doi: 10.16383/j.aas.c200846
                    基金項目: 國家自然科學基金(62033003, 61973091), 廣東省特支計劃本土創新創業團隊項目(2019BT02X353)和中國博士后科學基金(2020M682614)資助
                    詳細信息
                      作者簡介:

                      趙光同:廣東工業大學自動化學院碩士研究生. 主要研究方向為非線性系統與多智能體控制. E-mail: 2112004043@mail2.gdut.edu.cn

                      曹亮:廣東工業大學自動化學院博士后. 主要研究方向為非線性系統智能控制和自適應模糊控制. E-mail: caoliang0928@163.com

                      周琪:廣東工業大學自動化學院教授. 主要研究方向為復雜系統智能控制, 協同控制及其應用. E-mail: zhouqi2009@gmail.com

                      李鴻一:廣東工業大學自動化學院教授. 主要研究方向為智能控制, 協同控制及其應用. 本文通信作者. E-mail: lihongyi2009@gmail.com

                    Event-triggered Adaptive Fuzzy Control for Interconnected Large-scale Systems With Unmodeled Dynamics

                    Funds: Supported by National Natural Science Foundation of China (62033003, 61973091), Local Innovative and Research Teams Project of Guangdong Special Support Program (2019BT02X353) and China Postdoctoral Science Foundation (2020M682614)
                    More Information
                      Author Bio:

                      ZHAO Guang-Tong Master student at the School of Automation, Guangdong University of Technology. His research interest covers the control of nonlinear systems and multi-agent

                      CAO Liang Postdoctor at the School of Automation, Guangdong University of Technology. His research interest covers intelligent control of nonlinear systems and adaptive fuzzy control

                      ZHOU Qi Professor at the School of Automation, Guangdong University of Technology. Her research interest covers intelligent control of complex systems, cooperative control and its applications

                      LI Hong-Yi Professor at the School of Automation, Guangdong University of Technology. His research interest covers intelligent control, cooperative control and its applications. Corresponding author of this paper

                    • 摘要:

                      針對一類具有未建模動態及執行器故障的非嚴格反饋非線性互聯大系統, 提出一種基于事件觸發機制的模糊分散自適應輸出反饋控制算法. 首先, 通過設計模糊狀態觀測器估計系統中不可測的狀態, 并引入李雅普諾夫函數約束未建模動態. 然后, 提出一種基于事件觸發機制的自適應容錯控制器補償多個執行器故障產生的影響. 最后, 利用障礙李雅普諾夫函數實現對系統輸出的約束, 并證明閉環系統中所有信號均是半全局一致最終有界的, 且設計的事件觸發機制可以避免Zeno行為. 數值仿真結果驗證所提出設計方案的可行性及有效性.

                    • 圖  1  子系統的輸出$y_{1},y_2$和觀測狀態$\hat{x}_{1,1},\hat{x}_{2,1}$的響應曲線

                      Fig.  1  Trajectories of output $y_{1},y_2$ and observer $\hat{x}_{1,1},\hat{x}_{2,1}$

                      圖  2  子系統未建模動態$z_1,z_2$響應曲線

                      Fig.  2  Trajectories of unmodeled dynamics $z_1,z_2$

                      圖  3  濾波器輸入及輸出的響應曲線

                      Fig.  3  Trajectories of filter' s input and output

                      圖  4  子系統第一個執行器輸出的響應曲線

                      Fig.  4  Trajectories of the first actuator' s output

                      360彩票
                    • [1] Huang S N, Tan K K, Lee T H. Decentralized control design for large-scale systems with strong interconnections using neural networks. IEEE Transactions on Automatic Control, 2003, 48(5): 805-810 doi: 10.1109/TAC.2003.811258
                      [2] Huang S N, Tan K K, Lee T H. Decentralized control of a class of large-scale nonlinear systems using neural networks. Automatica, 2005, 41(9): 1645-1649 doi: 10.1016/j.automatica.2005.02.010
                      [3] Tong S C, Li Y M, Liu Y J. Adaptive fuzzy output feedback decentralized control of pure-feedback nonlinear large-scale systems. International Journal of Robust and Nonlinear Control, 2014, 24(5): 930-954 doi: 10.1002/rnc.2927
                      [4] Li T S, Li R H, Li J F. Decentralized adaptive neural control of nonlinear interconnected large-scale systems with unknown time delays and input saturation. Neurocomputing, 2011, 74(14): 2277-2283
                      [5] Tong S C, Li Y M, Li T S. Observer-based adaptive fuzzy backstepping dynamic surface control for a class of non-linear systems with unknown time delays. IET Control Theory & Applications, 2011, 5(12): 1426-1438
                      [6] Zhou Q, Shi P, Xu S Y, Li H Y. Observer-based adaptive neural network control for nonlinear stochastic systems with time delay. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(1): 71-80 doi: 10.1109/TNNLS.2012.2223824
                      [7] Wang F, Liu Z, Li X H, et al. Observer-based finite time control of nonlinear systems with actuator failures. Information Sciences, 2019, 500: 1-14 doi: 10.1016/j.ins.2019.05.067
                      [8] Yang Y, Yue D. Observer-based decentralized adaptive NNs fault-tolerant control of a class of large-scale uncertain nonlinear systems with actuator failures. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49(3): 528-542 doi: 10.1109/TSMC.2017.2744676
                      [9] Zhang L L, Yang G H. Observer-based adaptive decentralized fault-tolerant control of nonlinear large-scale systems with sensor and actuator faults. IEEE Transactions on Industrial Electronics, 2019, 66(10): 8019-8029 doi: 10.1109/TIE.2018.2883267
                      [10] 楊彬, 周琪, 曹亮, 等. 具有指定性能和狀態約束的多智能體系統事件觸發控制. 自動化學報, 2019, 45(8): 1527-1535

                      Yang Bin, Zhou Qi, Cao Liang, et al. Event-triggered control for multi-agent systems with prescribed performance and full state constraints. Acta Automatica Sinica, 2019, 45(8): 1527-1535
                      [11] Li Y M, Ma Z Y, Tong S C. Adaptive fuzzy output-constrained fault-tolerant control of nonlinear stochastic large-scale systems with actuator faults. IEEE Transactions on Cybernetics, 2017, 47(9): 2362-2376 doi: 10.1109/TCYB.2017.2681683
                      [12] 鄭曉宏, 董國偉, 周琪, 等. 帶有輸出約束條件的隨機多智能體系統容錯控制. 控制理論與應用, 2020, 37(5): 961-968

                      Zheng Xiao-hong, Dong Guo-wei, Zhou Qi, et al. Fault-tolerant control for stochastic multi-agent systems with output constraints. Control Theory&Applications, 2020, 37(5): 961-968
                      [13] Wang L J, Li H Y, Zhou Q, et al. Adaptive fuzzy control for nonstrict feedback systems with unmodeled dynamics and fuzzy dead zone via output feedback. IEEE Transactions on Cybernetics, 2017, 47(9): 2400-2412 doi: 10.1109/TCYB.2017.2684131
                      [14] Tong S C, Wang T, Li Y M, et al. Adaptive neural network output feedback control for stochastic nonlinear systems with unknown dead-zone and unmodeled dynamics. IEEE Transactions on Cybernetics, 2014, 44(6): 910-921 doi: 10.1109/TCYB.2013.2276043
                      [15] Wu Z J, Xie X J, Zhang S Y. Adaptive backstepping controller design using stochastic small-gain theorem. Automatica, 2007, 43(4): 608-620 doi: 10.1016/j.automatica.2006.10.020
                      [16] Wang X J, Yin X H, Wu Q H, et al. Disturbance observer based adaptive neural control of uncertain MIMO nonlinear systems with unmodeled dynamics. Neurocomputing, 2018, 313: 247-258 doi: 10.1016/j.neucom.2018.06.031
                      [17] Tong S C, Liu C L, Li Y M. Fuzzy-adaptive decentralized output-feedback control for large-scale nonlinear systems with dynamical uncertainties. IEEE Transactions on Fuzzy Systems, 2010, 18(5): 845-861 doi: 10.1109/TFUZZ.2010.2050326
                      [18] Xia X N, Zhang T P. Adaptive quantized output feedback DSC of uncertain systems with output constraints and unmodeled dynamics based on reduced-order K-filters. Neurocomputing, 2018, 310: 236-245 doi: 10.1016/j.neucom.2018.05.031
                      [19] Chen M, Tao G. Adaptive fault-tolerant control of uncertain nonlinear large-scale systems with unknown dead zone. IEEE Transactions on Cybernetics, 2016, 46(8): 1851-1862 doi: 10.1109/TCYB.2015.2456028
                      [20] 張紹杰, 吳雪, 劉春生. 執行器故障不確定非線性系統最優自適應輸出跟蹤控制. 自動化學報, 2018, 44(12): 2188-2197

                      Zhan Shao-Jie, Wu Xue, Liu Chun-Sheng. Optimal adaptive output tracking control for a class of uncertain nonlinear systems with actuator failures. Acta Automatica Sinica, 2018, 44(12): 2188-2197
                      [21] Cao L, Li H Y, Wang N, et al. Observer-based event-triggered adaptive decentralized fuzzy control for nonlinear large-scale systems. IEEE Transactions on Fuzzy Systems, 2019, 27(6): 1201-1214 doi: 10.1109/TFUZZ.2018.2873971
                      [22] Yu H, Hao F, Chen T W. A uniform analysis on input-to-state stability of decentralized event-triggered control systems. IEEE Transactions on Automatic Control, 2019, 64(8): 3423-3430 doi: 10.1109/TAC.2018.2879764
                      [23] Rahnama A, Xia M, Antsaklis P J. A QSR-dissipativity based design for event-triggered networked systems. IEEE Transactions on Automatic Control, 2019, 64(6): 2590-2597 doi: 10.1109/TAC.2018.2866987
                      [24] 周琪, 陳廣登, 魯仁全, 等. 基于干擾觀測器的輸入飽和多智能體系統事件觸發控制. 中國科學:信息科學, 2019, 49(11): 1502-1516 doi: 10.1360/SSI-2019-0105

                      Zhou Qi, Chen Guang-Deng, Lu Ren-Quan, et al. Disturbance-observer-based event-triggered control for multi-agent systems with input saturation. Scientia Sinica Information, 2019, 49(11): 1502-1516 doi: 10.1360/SSI-2019-0105
                      [25] Jiang Z P, Hill D J. A robust adaptive backstepping scheme for nonlinear systems with unmodeled dynamics. IEEE Transactions on Automatic Control, 1999, 44(9): 1705-1711 doi: 10.1109/9.788536
                      [26] Chen B, Liu X P, Ge S S, et al. Adaptive fuzzy control of a class of nonlinear systems by fuzzy approximation approach. IEEE Transactions on Fuzzy Systems, 2012, 20(6): 1012-1021 doi: 10.1109/TFUZZ.2012.2190048
                      [27] Wang L Q, Dong J X, Xi C J. Event-triggered adaptive consensus for fuzzy output-constrained multi-agent systems with observers. Journal of the Franklin Institute, 2020, 357(1): 82-105 doi: 10.1016/j.jfranklin.2019.09.033
                      [28] Wang H Q, Chen B, Liu X P, et al. Robust adaptive fuzzy tracking control for pure-feedback stochastic nonlinear systems with input constraints. IEEE Transactions on Cybernetics, 2013, 43(6): 2093-2104 doi: 10.1109/TCYB.2013.2240296
                      [29] 郭子杰, 白偉偉, 周琪, 等. 基于性能指標約束的一類輸入死區非線性系統最優控制. 自動化學報, 2019, 45(11): 2128-2136

                      Guo Zi-Jie, Bai Wei-Wei, Zhou Qi, et al. Adaptive optimal control for a class of nonlinear systems with dead zone input and prescribed performance. Acta Automatica Sinica, 2019, 45(11): 2128-2136
                      [30] Yu J P, Shi P, Dong W J, et al. Observer and command-filter-based adaptive fuzzy output feedback control of uncertain nonlinear systems. IEEE Transactions on Industrial Electronics, 2015, 62(9): 5962-5970 doi: 10.1109/TIE.2015.2418317
                      [31] Dong W J, Jay A Farrel, Marios M, et al. Command filtered adaptive backstepping. IEEE Transactions on Control Systems Technology, 2012, 20(3): 566-580 doi: 10.1109/TCST.2011.2121907
                      [32] Han Y, Yu J P, Zhao L, et al. Finite-time adaptive fuzzy control for induction motors with input saturation based on command filtering. IET Control Theory & Applications, 2018, 12(15): 2148-2155
                      [33] Qiu J B, Sun K K, Rudas I J, et al. Command filter-based adaptive NN control for MIMO nonlinear systems with full-state constraints and actuator hysteresis. IEEE Transactions on Cybernetics, 2019, 50(7): 2905-2915
                    • 加載中
                    圖(4)
                    計量
                    • 文章訪問數:  301
                    • HTML全文瀏覽量:  130
                    • PDF下載量:  103
                    • 被引次數: 0
                    出版歷程
                    • 收稿日期:  2020-10-12
                    • 錄用日期:  2020-12-28
                    • 網絡出版日期:  2021-01-21
                    • 刊出日期:  2021-08-20

                    目錄

                      /

                      返回文章
                      返回