2.793

                    2018影響因子

                    (CJCR)

                    • 中文核心
                    • EI
                    • 中國科技核心
                    • Scopus
                    • CSCD
                    • 英國科學文摘

                    留言板

                    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

                    姓名
                    郵箱
                    手機號碼
                    標題
                    留言內容
                    驗證碼

                    繩長時變情況下輪胎式集裝箱起重機非線性防擺控制算法

                    曹海昕 郝運嵩 林靜正 盧彪 方勇純

                    曹海昕,  郝運嵩,  林靜正,  盧彪,  方勇純.  繩長時變情況下輪胎式集裝箱起重機非線性防擺控制算法.  自動化學報,  2021,  47(8): 1876?1884 doi: 10.16383/j.aas.c200859
                    引用本文: 曹海昕,  郝運嵩,  林靜正,  盧彪,  方勇純.  繩長時變情況下輪胎式集裝箱起重機非線性防擺控制算法.  自動化學報,  2021,  47(8): 1876?1884 doi: 10.16383/j.aas.c200859
                    Cao Hai-Xin,  Hao Yun-Song,  Lin Jing-Zheng,  Lu Biao,  Fang Yong-Chun.  Nonlinear anti-swing control for rubber tyre container gantry crane with rope length variation.  Acta Automatica Sinica,  2021,  47(8): 1876?1884 doi: 10.16383/j.aas.c200859
                    Citation: Cao Hai-Xin,  Hao Yun-Song,  Lin Jing-Zheng,  Lu Biao,  Fang Yong-Chun.  Nonlinear anti-swing control for rubber tyre container gantry crane with rope length variation.  Acta Automatica Sinica,  2021,  47(8): 1876?1884 doi: 10.16383/j.aas.c200859

                    繩長時變情況下輪胎式集裝箱起重機非線性防擺控制算法

                    doi: 10.16383/j.aas.c200859
                    基金項目: 國家重點研發計劃 (2018YFB1309000), 國家自然科學基金面上項目 (61873132), 廣東省機器人與智能系統重點實驗室開放基金資助
                    詳細信息
                      作者簡介:

                      曹海昕:南開大學人工智能學院機器人與信息自動化研究所碩士研究生. 主要研究方向為欠驅動系統控制. E-mail: c_haixin@mail.nankai.edu.cn

                      郝運嵩:南開大學人工智能學院機器人與信息自動化研究所碩士研究生. 主要研究方向為欠驅動系統的非線性控制. E-mail: haoysnk@hotmail.com

                      林靜正:南開大學人工智能學院機器人與信息自動化研究所博士研究生. 主要研究方向為欠驅動系統控制. E-mail: ljz970129@ mail.nankai.edu.cn

                      盧彪:南開大學人工智能學院機器人與信息自動化研究所講師. 主要研究方向為欠驅動系統非線性控制. E-mail: lubiao@mail.nankai.edu.cn

                      方勇純:南開大學人工智能學院機器人與信息自動化研究所教授. 主要研究方向為非線性控制, 機器人視覺伺服控制, 欠驅動系統控制和基于原子力顯微鏡的納米系統. 本文通信作者. E-mail: fangyc@nankai.edu.cn

                    Nonlinear Anti-swing Control for Rubber Tyre Container Gantry Crane With Rope Length Variation

                    Funds: Supported by National Key R&D Program of China (2018YFB1309000), National Nature Science Foundation of China (61873132), the Opening Project of Guangdong Provincial Key Lab of Robotics and Intelligent System
                    More Information
                      Author Bio:

                      CAO Hai-Xin Master student at the Institute of Robotics and Automatic Information Systems, College of Artificial Intelligence, Nankai University. His main research interest is control of underactuated systems

                      HAO Yun-Song Master student at the Institute of Robotics and Automatic Information Systems, College of Artificial Intelligence, Nankai University. His main research interest is nonlinear control of underactuated systems

                      LIN Jing-Zheng Ph. D. candidate at the Institute of Robotics and Automatic Information Systems, College of Artificial Intelligence, Nankai University. His main research interest is nonlinear control of underactuated systems

                      LU Biao Lecturer at the Institute of Robotics and Automatic Information System, College of Artificial Intelligence, Nankai University. His main research interest is nonlinear control of underactuated systems

                      FANG Yong-Chun Professor at the Institute of Robotics and Automatic Information Systems, College of Artificial Intelligence, Nankai University. His research interest covers nonlinear control, robot visual servoing control, control of underactuated systems and AFM-based nano-systems. Corresponding author of this paper

                    • 摘要:

                      四繩輪胎式集裝箱起重機由于自身的動力學特性較為復雜, 目前仍缺乏穩定高效的控制手段.?為解決港口起重機作業過程中臺車定位精準度低、負載易受干擾擺幅大的問題, 文章設計了一種面向工業場景的非線性反饋控制器. 首先在未進行近似處理的前提下對起重機吊具擺動情況進行了建模分析. 在此基礎上, 通過在控制器中引入擺幅反饋信息, 實現了繩長時變情況下臺車的精確定位與負載擺幅的有效抑制, 為集裝箱的運送路徑增加了更多選擇. 隨后基于Lyapunov方法對控制器進行了穩定性分析. 所設計的控制方案在港口實際設備上進行了驗證, 在定位精度與消擺性能上相較于人工操作取得了很大提升.

                    • 圖  1  四繩起重機吊具擺動模型

                      Fig.  1  Swing model of four-rope crane spreader

                      圖  2  四繩輪胎式集裝箱起重機

                      Fig.  2  Four-rope rubber-tyre container crane

                      圖  3  控制架構

                      Fig.  3  Control architecture

                      圖  4  長距離無箱運送實驗結果

                      Fig.  4  Results of long-distance transportation without container

                      圖  5  長距離帶箱運送實驗結果

                      Fig.  5  Results of long-distance transportation with container

                      圖  6  短距離帶箱運送實驗結果

                      Fig.  6  Results of short-distance transportation with container

                      表  1  不同作業模式下數據對比

                      Table  1  Data comparison of different operation modes

                      作業模式臺車位置
                      誤差 (cm)
                      起升高度
                      誤差 (cm)
                      最大擺
                      角 (°)
                      作業用
                      時 (s)
                      長距離無箱運送人工控制24232.631.8
                      算法控制411.123.9
                      長距離帶箱運送人工控制43733.132.7
                      算法控制401.424.6
                      短距離帶箱運送人工控制15672.523.8
                      算法控制221.217.3
                      下載: 導出CSV
                      360彩票
                    • [1] Wang D, He H, Liu D. Intelligent Optimal Control With Critic Learning for a Nonlinear Overhead Crane System. IEEE Transactions on Industrial Informatics, 2017, 14(07): 2932-2940
                      [2] Tho H D, Kaneshige A, Terashima K. Minimum-time S-curve commands for vibration-free transportation of an overhead crane with actuator limits. Control Engineering Practice, 2020, 98: 1-12
                      [3] 劉平, 李國棟, 楊金鳳, 劉興高. 集裝箱裝卸擺動最優控制快速數值求解算法. 控制理論與應用, 2019, 36(08): 1275-1282

                      Liu Ping, Li Guo-Dong, Yang Jin-Feng, Liu Xing-Gao. Fast Optimal Control Numerical Approach for the Swing Control of Container Load. Control Theory & Applications, 2019, 36(08): 1275-1282
                      [4] Wu Y M, Sun N, Chen H. Nonlinear time-optimal trajectory planning for varying-rope-length overhead cranes. Assembly Automation, 2018, 38(05): 587-594 doi: 10.1108/AA-12-2017-183
                      [5] Zhang M H, Ma X, Song R, Rong X W, Tian G H, Tian X C, Li Y B. Adaptive Proportional-Derivative Sliding Mode Control Law With Improved Transient Performance for Underactuated Overhead Crane Systems. IEEE/CAA Journal of Automatica Sinica, 2018, 5(03): 683-690 doi: 10.1109/JAS.2018.7511072
                      [6] Wang Y S, Xu W M. Synchronous Control of Double-container Overhead Crane Based on PI Terminal Sliding Mode. International Core Journal of Engineering, 2020, 6(05): 133-143
                      [7] 何博, 方勇純, 盧彪. 針對輸入時滯的橋式起重機魯棒控制. 自動化學報, 2019, 45(06): 1065-1073

                      He Bo, Fang Yong-Chun, Lu Biao. Robust Control for an Overhead Crane With Input Delay. Acta Automatica Sinica, 2019, 45(06): 1065-1073
                      [8] Chwa D. Sliding-Mode-Control-Based Robust Finite-Time Antisway Tracking Control of 3-D Overhead Cranes. IEEE Transactions on Industrial Electronics, 2017, 64(08): 6775-6784 doi: 10.1109/TIE.2017.2701760
                      [9] Zhao Y, Gao H. Fuzzy-Model-Based Control of an Overhead Crane With Input Delay and Actuator Saturation. IEEE Transactions on Fuzzy Systems, 2012, 20(01): 181-186 doi: 10.1109/TFUZZ.2011.2164083
                      [10] Chen H, Fang Y C, Sun N. A Swing Constraint Guaranteed MPC Algorithm for Underactuated Overhead Cranes. IEEE/ASME Transactions on Mechatronics, 2016, 21(05): 2543-2555 doi: 10.1109/TMECH.2016.2558202
                      [11] Szpytko, Janusz, Smoczek. Particle Swarm Optimization-Based Multivariable Generalized Predictive Control for an Overhead Crane. IEEE/ASME transactions on mechatronics, 2017, 22(01): 258-268 doi: 10.1109/TMECH.2016.2598606
                      [12] Wu X, He X. Nonlinear Energy-Based Regulation Control of Three-Dimensional Overhead Cranes. IEEE Transactions on Automation Science & Engineering, 2017, 14(02): 1297-1308
                      [13] 胡洲, 王志勝, 甄子洋. 帶輸入飽和的欠驅動吊車非線性信息融合控制. 自動化學報, 2014, 40(07): 1522-1527

                      Hu Zhou, Wang Zhi-Sheng, Zhen Zi-Yang. Nonlinear Information Fusion Control for Underactuated Cranes with Input Saturation. Acta Automatica Sinica, 2014, 40(07): 1522-1527
                      [14] 何博, 方勇純, 劉海亮, 孫寧. 橋式起重機精準定位在線軌跡規劃方法設計及應用. 控制理論與應用, 2016, 33(10): 1352-1358 doi: 10.7641/CTA.2016.60312

                      He Bo, Fang Yong-Chun, Liu Hai-Liang, Sun Ning. Precise positioning online trajectory planner design and application for overhead cranes. Control Theory & Applications, 2016, 33(10): 1352-1358 doi: 10.7641/CTA.2016.60312
                      [15] Singhose W, Porter L, Kenison M, Kriikku E. Effects of hoisting on the input shaping control of gantry cranes. Control Engineering Practice, 2000, 8(10): 1159-1165 doi: 10.1016/S0967-0661(00)00054-X
                      [16] Ngo Q H, Hong K S, Jung I H. Adaptive control of an axially moving system. Journal of Mechanical ence and Technology, 2009, 23(11): 3071-3078
                      [17] Kim C S, Hong K S. Boundary Control of Container Cranes from the Perspective of Controlling an Axially Moving String System. International Journal of Control, Automation, and Systems, 2009, 7(03): 437-445 doi: 10.1007/s12555-009-0313-6
                      [18] Chwa D, Park M S, Hong S K. Antisway Tracking Control of Overhead Cranes With System Uncertainty and Actuator Nonlinearity Using an Adaptive Fuzzy Sliding-Mode Control. IEEE Transactions on Industrial Electronics, 2008, 55(11): 3972-3984 doi: 10.1109/TIE.2008.2004385
                      [19] Lu B, Fang Y C, Sun N. Modeling and verification for a four-rope crane. In: Proceedings of the 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems. Shenyang, China: IEEE, 2015. 2018?2023
                      [20] Lu B, Fang Y C, Sun N. Nonlinear control for underactuated multi-rope cranes: modeling, theoretical design and hardware experiments. Control Engineering Practice, 2018, 76: 123-132 doi: 10.1016/j.conengprac.2018.04.005
                    • 加載中
                    圖(6) / 表(1)
                    計量
                    • 文章訪問數:  223
                    • HTML全文瀏覽量:  158
                    • PDF下載量:  48
                    • 被引次數: 0
                    出版歷程
                    • 收稿日期:  2020-10-14
                    • 錄用日期:  2020-12-28
                    • 網絡出版日期:  2021-02-01
                    • 刊出日期:  2021-08-20

                    目錄

                      /

                      返回文章
                      返回