2.793

                    2018影響因子

                    (CJCR)

                    • 中文核心
                    • EI
                    • 中國科技核心
                    • Scopus
                    • CSCD
                    • 英國科學文摘

                    留言板

                    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

                    姓名
                    郵箱
                    手機號碼
                    標題
                    留言內容
                    驗證碼

                    基于擴張狀態觀測器的四旋翼吊掛飛行系統非線性控制

                    范云生 陳欣宇 趙永生 宋保健

                    范云生, 陳欣宇, 趙永生, 宋保健. 基于擴張狀態觀測器的四旋翼吊掛飛行系統非線性控制. 自動化學報, 2021, x(x): 1?13 doi: 10.16383/j.aas.c210001
                    引用本文: 范云生, 陳欣宇, 趙永生, 宋保健. 基于擴張狀態觀測器的四旋翼吊掛飛行系統非線性控制. 自動化學報, 2021, x(x): 1?13 doi: 10.16383/j.aas.c210001
                    Fan Yun-Sheng, Chen Xin-Yu, Zhao Yong-Sheng, Song Bao-Jian.jpg. Nonlinear control of quadrotor suspension system based on extended state observer. Acta Automatica Sinica, 2021, x(x): 1?13 doi: 10.16383/j.aas.c210001
                    Citation: Fan Yun-Sheng, Chen Xin-Yu, Zhao Yong-Sheng, Song Bao-Jian.jpg. Nonlinear control of quadrotor suspension system based on extended state observer. Acta Automatica Sinica, 2021, x(x): 1?13 doi: 10.16383/j.aas.c210001

                    基于擴張狀態觀測器的四旋翼吊掛飛行系統非線性控制

                    doi: 10.16383/j.aas.c210001
                    基金項目: 國家自然科學基金(61976033, 51609033)資助項目, 遼寧省重點研發指導計劃(2019JH8/10100100)資助項目, 大連市軟科學研究計劃(2019J11CY014)資助項目
                    詳細信息
                      作者簡介:

                      范云生:大連海事大學船舶電氣工程學院副教授,博士生導師. 主要研究方向為智能控制理論與應用. 本文通信作者. E-mail: yunsheng@dlmu.edu.cn

                      陳欣宇:大連海事大學船舶電氣工程學院碩士研究生. 主要研究方向為無人飛行器的非線性控制. E-mail: chenxinyu_dlmu@163.com

                      趙永生:大連海事大學船舶電氣工程學院教授,碩士生導師. 主要研究方向為嵌入式測控系統,檢測技術與自動化裝置和智能控制技術. E-mail: yszhao@dlmu.edu.cn

                      宋保?。捍筮B海事大學船舶電氣工程學院博士研究生,主要研究方向為無人系統控制理論. E-mail: songbj725@163.com

                    Nonlinear Control of Quadrotor Suspension System Based on Extended State Observer

                    Funds: Supported by National Natural Science Foundation of China (61976033, 51609033), the Key Development Guidance Program of Liaoning Province of China under Grant (2019JH8/10100100), and the Soft Science Research Program of Dalian City of China under Grant (2019J11CY014)
                    More Information
                      Author Bio:

                      FAN Yun-Sheng Associate professor and doctoral supervisor at the College of Marine Electrical Engineering, Dalian Maritime University. His main research direction is intelligent control theory and application. Corresponding author of this paper

                      CHEN Xin-Yu Master student at the College of Marine Electrical Engineering, Dalian Maritime University. His main research direction is nonlinear control of unmanned aerial vehicle

                      ZHAO Yong-Sheng Professor and master supervisor at the College of Marine Electrical Engineering, Dalian Maritime University. His main research directions are embedded measurement and control system, detection technology and automation device and intelligent control technology

                      SONG Bao-Jian Ph.D. candidate at the College of Marine Electrical Engineering, Dalian Maritime University. His main research direction is unmanned system control theory

                    • 摘要: 針對一類四旋翼飛行器吊掛飛行系統的負載擺動抑制和軌跡跟蹤精確控制的問題, 考慮系統存在未知外界擾動和模型動態不確定的情況, 提出了一種基于擴張狀態觀測器(Extended state observer, ESO)的吊掛負載擺動抑制的非線性軌跡跟蹤控制方法. 本文將四旋翼吊掛飛行系統分解為姿態, 位置和負載擺動控制三個動態子系統, 分別設計非線性控制器實現欠驅動約束下的解耦控制; 設計了一種擴張狀態觀測器, 用以估計和補償四旋翼與吊掛負載耦合飛行的未知外界擾動與模型動態不確定性, 并證明了閉環系統的穩定性, 跟蹤誤差及吊掛負載擺動所有信號的一致最終有界. 最后利用Quanser公司的QBall2飛行器進行三維空間螺旋軌跡的跟蹤控制, 仿真結果驗證了未知干擾下基于擴張狀態觀測器的四旋翼吊掛飛行非線性控制的有效性和優越性, 實現了四旋翼吊掛系統軌跡跟蹤的精確控制和飛行過程中負載擺動的快速抑制.
                    • 圖  1  四旋翼吊掛負載耦合系統模型

                      Fig.  1  Model of quadrotor suspension system

                      圖  2  四旋翼吊掛系統控制器

                      Fig.  2  Quadrotor suspension system controller

                      圖  3  四旋翼吊掛系統實驗平臺

                      Fig.  3  Experimental platform of quadrotor suspension system

                      圖  4  (a) ESO-空間軌跡跟蹤曲線 (b) Adp-空間軌跡跟蹤曲線

                      Fig.  4  (a) ESO-trajectory tracking curve (b) Adp-trajectory tracking curve

                      圖  5  (a) ESO-xoy平面軌跡跟蹤曲線 (b) Adp- xoy平面軌跡跟蹤曲線

                      Fig.  5  (a) ESO-xoy plane track tracking curve (b) Adp- xoy plane track tracking curve

                      圖  6  (a) ESO-xoz平面軌跡跟蹤曲線 (b) Adp-xoz平面軌跡跟蹤曲線

                      Fig.  6  (a) ESO-xoz plane trajectory tracking curve (b) Adp-xoz plane trajectory tracking curve

                      圖  7  (a) ESO-飛行器位置跟蹤誤差 (b) Adp-飛行器位置跟蹤誤差

                      Fig.  7  (a) ESO-quadrotor position tracking error (b) Adp-quadrotor position tracking error

                      圖  8  吊掛負載擺角

                      Fig.  8  Swing angle of hanging load

                      圖  9  飛行器姿態角控制

                      Fig.  9  Control of quadrotor attitude angle

                      圖  10  飛行器速度估計

                      Fig.  10  Quadrotor speed estimation

                      圖  12  飛行器姿態角速度估計

                      Fig.  12  Estimation of quadrotor attitude angular velocity

                      圖  11  吊掛角速度估計

                      Fig.  11  Estimation of hanging angular velocity

                      圖  14  吊掛角估計誤差

                      Fig.  14  Hanging angle estimation error

                      圖  13  飛行器位置估計誤差

                      Fig.  13  Quadrotor position estimation error

                      圖  15  飛行器姿態角估計誤差

                      Fig.  15  Estimation error of quadrotor attitude angle

                      圖  17  吊掛角觀測干擾

                      Fig.  17  Interference of hanging angle observation

                      圖  16  飛行器位置觀測干擾

                      Fig.  16  Interference of quadrotor position observation

                      圖  18  飛行器姿態角觀測干擾

                      Fig.  18  Interference of quadrotor attitude angle observation

                      表  1  模型參數

                      Table  1  Model parameters

                      參數大小
                      $M$1.8 kg
                      $l$0.2 m
                      ${I_x}$0.03 kg·m2
                      ${I_y}$0.03 kg·m2
                      ${I_z}$0.04 kg·m2
                      ${K_t}$8.8 N
                      ${K_y}$0.4 N
                      $m$0.2 kg
                      $L$0.3 m
                      下載: 導出CSV

                      表  2  擴張觀測器參數

                      Table  2  Parameters of ESO

                      參數$X,Y,Z$$\phi ,\theta ,\psi $$\alpha ,\beta $
                      ${\kappa _1}$55100100
                      ${\kappa _2}$55010001000
                      ${\kappa _3}$55001000010000
                      下載: 導出CSV
                      360彩票
                    • [1] Romero J G, Rodríguez-Cortés H. Asymptotic stability for a transformed nonlinear UAV model with a suspended load via energy shaping. European Journal of Control, 2020, 52: 87-96. doi: 10.1016/j.ejcon.2019.09.002
                      [2] Ren Yong, Chen Mou. Anti-swing control for a suspension cable system of a helicopter with cable swing constraint and unknown dead-zone. Neurocomputing, 2019, 356: 257-267. doi: 10.1016/j.neucom.2019.04.056
                      [3] 曹龍, 曹義華, 李春華. 直升機-吊掛耦合系統平衡特性和穩定性分析. 北京航空航天大學學報, 2014, 40(09): 1219-1224.

                      Cao Long, Cao Yi-Hua, Li Chun-Hua. Analysis of the balance characteristics and stability of the helicopter-hanging interchange system. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(09): 1219-1224.
                      [4] Thanapalan K. Nonlinear controller design for a helicopter with an external slung load system. Systems Science & Control Engineering, 2017, 5(1): 97-107.
                      [5] 何榮榮, 陳謀, 吳慶憲, 劉楠. 無人直升機吊掛系統滑模反步減擺控制. 航空兵器, 2020, 27(05): 100-106.

                      He Rong-Rong, Chen Mou, Wu Qing-Xian, Liu Nan. Sliding mode anti-step sway control of unmanned helicopter suspension system. Aviation Ordnance, 2020, 27(05): 100-106.
                      [6] Cao Yi-Hua, Nie Wen-Song, Wang Zhao-Rui, Wan Shao-Feng. Dynamic modeling of helicopter-slung load system under the flexible sling hypothesis. Aerospace Science and Technology, 2020, 99: 105770. doi: 10.1016/j.ast.2020.105770
                      [7] 黃剛, 李軍華. 基于AC-DSDE進化算法多UAVs協同目標分配. 自動化學報, 2021, 47(01): 173-184.

                      Huang Gang, Li Jun-Hua. Multi UAVs Cooperative Target Assignment Based on ac-dsde evolutionary algorithm. Acta Automatica Sinica, 2021, 47(01): 173-184.
                      [8] 甄子洋. 艦載無人機自主著艦回收制導與控制研究進展. 自動化學報, 2019, 45(04): 669-681.

                      Zhen Zi-Yang. Research progress of guidance and control for autonomous landing and recovery of Shipborne UAV. Acta Automatica Sinica, 2019, 45(04): 669-681.
                      [9] Sanalitro D, Savino H J, Tognon M, et al. Full-pose Manipulation Control of a Cable-suspended load with Multiple UAVs under Uncertainties. IEEE Robotics and Automation Letters, 2020, 5(2): 2185-2191. doi: 10.1109/LRA.2020.2969930
                      [10] Guerrero-Sánchez M E, Lozano R, Castillo P, et al. Nonlinear control strategies for a UAV carrying a load with swing attenuation. Applied Mathematical Modelling, 2021, 91: 709-722. doi: 10.1016/j.apm.2020.09.027
                      [11] Qian Long-Hao, Liu H H T. Dynamics and control of a quadrotor with a cable suspended payload. In: Proceedings of the 30th IEEE Canadian Conference on Electrical and Computer Engineering. Windsor, Canada: IEEE, 2017.1−4.
                      [12] Ailon A, Arogeti S. On set-point control of a quadrotor-type helicopter with a suspended load. In: Proceedings of the 2nd International Conference on Control, Automation and Robotics. Hong Kong, China: IEEE, 2016.194?199.
                      [13] Yi Kui, Gu Feng, Yang Li-Ying, He Yu-Qing, Han Jian-Da. Sliding mode control for a quadrotor slung load system. In: Proceedings of the 36th Chinese Control Conference. Dalian, China: IEEE, 2017.3967?3703.
                      [14] 王詩章, 鮮斌, 楊森. 無人機吊掛飛行系統的減擺控制設計. 自動化學報, 2018, 44 (10): 1771-1780.

                      Wang Shi-Zhang, Xian Bin, Yang Sen. Design of sway control for UAV suspension flight system. Acta Automatica Sinica, 2018, 44(10): 1771-1780.
                      [15] Cruz P J, Oishi M, Fierro R. Lift of a cable-suspended load by a quadrotor: A hybrid system approach. In: Proceedings of the 2015 IEEE American Control Conference. Chicago, IL, USA: IEEE, 2015.1887?1892.
                      [16] Cruz P J, Fierro R. Cable-suspended load lifting by a quadrotor UAV: hybrid model, trajectory generation, and control. Autonomous Robots, 2017, 41(8): 1629-1643. doi: 10.1007/s10514-017-9632-2
                      [17] Emanuele L. de Angelis, Fabrizio Giulietti, Goele Pipeleers. Two-time-scale control of a multirotor aircraft for suspended load transportation. Aerospace Science and Technology, 2019, 84: 193-203. doi: 10.1016/j.ast.2018.10.012
                      [18] 梁曉, 胡欲立. 四旋翼吊掛運輸系統動態反饋線性化軌跡控制. 自動化學報, 2020, 46(09): 1993-2002.

                      Liang Xiao, Hu Yu-Li. Dynamic feedback linearization trajectory control of four-rotor suspension transportation system. Acta Automatica Sinica, 2020, 46(09): 1993-2002.
                      [19] Liang X, Fang Y, Sun N, et al. Nonlinear hierarchical control for unmanned quadrotor transportation systems. IEEE Transactions on Industrial Electronics, 2018, 65(4): 3395-3405. doi: 10.1109/TIE.2017.2752139
                      [20] Feng Ying, Rabbath C A, Rakheja S, et al. Adaptive controller design for generic quadrotor aircraft platform subject to slung load. In: Proceedings of the 28th Canadian Conference on Electrical and Computer Engineering. Halifax, NS, Canada: IEEE, 2015.1135?1139.
                      [21] David, Cabecinhas, et al. A trajectory tracking control law for a quadrotor with slung load. Automatica, 2019, 106: 384-389. doi: 10.1016/j.automatica.2019.04.030
                      [22] Yu G, Cabecinhas D, Cunha R, et al. Nonlinear Backstepping Control of a Quadrotor-Slung Load System. IEEE/ASME Transactions on Mechatronics, 2019, 24(5): 2304-2315. doi: 10.1109/TMECH.2019.2930211
                      [23] Vandanipour M, Khodabandeh M. Adaptive Fractional Order Sliding Mode Control for a Quadrotor with a Varying Load. Aerospace Science and Technology, 2019, 86: 737-747. doi: 10.1016/j.ast.2019.01.053
                      [24] Bin, Xian, Shizhang, et al. An Online Trajectory Planning Approach for a Quadrotor UAV With a Slung Payload. IEEE Transactions on Industrial Electronics, 2019, 67(8): 6669-6678.
                      [25] Antonelli G, Cataldi E, Arrichiello F, et al. Adaptive Trajectory Tracking for Quadrotor MAVs in Presence of Parameter Uncertainties and External Disturbances. IEEE Transactions on Control Systems Technology, 2017, 26(1): 248-254.
                      [26] Cabecinhas D, Cunha R, Silvestre C. A nonlinear quadrotor trajectory tracking controller with disturbance rejection. Control Engineering Practice, 2014, 26: 1-10. doi: 10.1016/j.conengprac.2013.12.017
                      [27] 范云生, 曹亞博, 趙永生. 四旋翼飛行器軌跡跟蹤控制器的設計與驗證. 儀器儀表學報, 2017, 38(3): 741-749. doi: 10.3969/j.issn.0254-3087.2017.03.029

                      Fan Yun-Sheng, Cao Ya-Bo, Zhao Yong-Sheng. Design and verification of a quadrotor trajectory tracking controller. Chinese Journal of Scientific Instrument, 2017, 38(3): 741-749. doi: 10.3969/j.issn.0254-3087.2017.03.029
                      [28] FAN Y SH, CAO Y B, GUO Ch, et al. Fuzzy Self-adaptive Proportional Integration Differential Control for Attitude Stabilization of Quadrotor UAV. Journal of Donghua University(English Edition), 2016, 33(5): 768-773.
                      [29] Fan Yun-Sheng, Cao Ya-Bo, Zhao Yong-Sheng. Sliding Mode Control for Nonlinear Trajectory Tracking of a Quadrotor. In: Proceedings of the 36th Chinese Control Conference. Dalian, China: IEEE, 2017.6676?6680.
                      [30] 范云生, 何智平, 曹健, 王國峰. 四旋翼飛行器非線性軌跡跟蹤控制. 儀器儀表學報, 2019, 40(10): 247-256.

                      Fan Yun-Sheng, He Zhi-Ping, Cao Jian, Wang Guo-Feng. Nonlinear trajectory tracking control of quadrotor aircraft. Chinese Journal of Scientific Instrument, 2019, 40(10): 247-256.
                      [31] Chen Xin-Yu, Zhao Yong-Sheng Fan Yun-Sheng. Adaptive Integral Backstepping Control for a Quadrotor with Suspended Flight. In: Proceedings of 5th International Conference on Automation, Control and Robotics Engineering. Dalian, China: IEEE, 2020.226?234.
                      [32] Kotaru P, Wu G, Sreenath K. Dynamics and control of a quadrotor with a payload suspended through an elastic cable. 2017 American Control Conference. Seattle, WA, USA: IEEE, 2017.3906?3913.
                    • 加載中
                    計量
                    • 文章訪問數:  143
                    • HTML全文瀏覽量:  61
                    • 被引次數: 0
                    出版歷程
                    • 收稿日期:  2020-12-31
                    • 錄用日期:  2021-06-24
                    • 網絡出版日期:  2021-08-06

                    目錄

                      /

                      返回文章
                      返回